586 research outputs found

    Analysis and synthesis of concurrent sequential programs

    Get PDF
    Concurrent sequential program analysis and synthesi

    A survey of models for parallel computing

    Get PDF
    Survey of models for parallel computin

    The mutual exclusion problem

    Get PDF
    Mutual exclusion or interlock problem applied to computer operation

    Analysis of parallel systems

    Get PDF
    Analysis of parallel system

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    Novel Role of the IGF-1 Receptor in Endothelial Function and Repair: Studies in Endothelium-Targeted IGF-1 Receptor Transgenic Mice

    Get PDF
    We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to NG-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair. Insulin-resistant type 2 diabetes characterized by perturbation of the insulin/IGF-1 system is a multisystem disorder of nutrient homeostasis, cell growth, and tissue repair (1). As a result, type 2 diabetes is a major risk factor for the development of a range of disorders of human health, including occlusive coronary artery disease (2), peripheral vascular disease (3), stroke (4), chronic vascular ulcers (5), proliferative retinopathy (6), and nephropathy (7). A key hallmark of these pathologies is endothelial cell dysfunction characterized by a reduction in bioavailability of the signaling radical nitric oxide (NO). In the endothelium, insulin binding to its tyrosine kinase receptor stimulates release of NO (8). Insulin resistance at a whole-body level (9,10) and specific to the endothelium (11) leads to reduced bioavailability of NO, indicative of a critical role for insulin in regulating NO bioavailability. The insulin receptor (IR) and IGF-1 receptor (IGF-1R) are structurally similarβ€”both composed of two extracellular Ξ± and two transmembrane Ξ² subunits linked by disulfide bonds (12). As a result, IGF-1R and IR can heterodimerize to form insulin-resistant hybrid receptors composed of one IGF-1R-Ξ±Ξ² complex and one IR-Ξ±Ξ² subunit complex (13,14). We recently demonstrated that reducing IGF-1R (by reducing the number of hybrid receptors) enhances insulin sensitivity and NO bioavailability in the endothelium (15). To examine the effect of increasing IGF-1R specifically in the endothelium on NO bioavailability, endothelial repair, and metabolic homeostasis, we generated a transgenic mouse with targeted overexpression of the human IGF-1R in the endothelium (hIGFREO)

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Cannabinoid Regulation of Nitric Oxide Synthase I (nNOS) in Neuronal Cells

    Get PDF
    In our previous studies, CB1 cannabinoid receptor agonists stimulated production of cyclic GMP and translocation of nitric oxide (NO)-sensitive guanylyl cyclase in neuronal cells (Jones et al., Neuropharmacology 54:23–30, 2008). The purpose of these studies was to elucidate the signal transduction of cannabinoid-mediated neuronal nitric oxide synthase (nNOS) activation in neuronal cells. Cannabinoid agonists CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), WIN55212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate), and the metabolically stable analog of anandamide, (R)-(+)-methanandamide stimulated NO production in N18TG2 cells over a 20-min period. Rimonabant (N-(piperidin-lyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-H-pyrazole-3-carboxamide), a CB1 receptor antagonist, partially or completely curtailed cannabinoid-mediated NO production. Inhibition of NOS activity (NG-nitro-l-arginine) or signaling via Gi/o protein (pertussis toxin) significantly limited NO production by cannabinoid agonists. Ca2+ mobilization was not detected in N18TG2 cells after cannabinoid treatment using Fluo-4Β AM fluorescence. Cannabinoid-mediated NO production was attributed to nNOS activation since endothelial NOS and inducible NOS protein and mRNA were not detected in N18TG2 cells. Bands of 160 and 155Β kDa were detected on Western blot analysis of cytosolic and membrane fractions of N18TG2 cells, using a nNOS antibody. Chronic treatment of N18TG2 cells with cannabinoid agonists downregulated nNOS protein and mRNA as detected using Western blot analysis and real-time polymerase chain reaction, respectively. Cannabinoid agonists stimulated NO production via signaling through CB1 receptors, leading to activation of Gi/o protein and enhanced nNOS activity. The findings of these studies provide information related to cannabinoid-mediated NO signal transduction in neuronal cells, which has important implications in the ongoing elucidation of the endocannabinoid system in the nervous system

    The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst

    Get PDF
    Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19Β±0.01 pmoles L-citrulline mg protβˆ’1 hβˆ’1) compared to days 4 (0.34Β±0.03) and 5 (0.35Β±0.02) of pregnancy and to day 6 implantation sites (0.33Β±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70Β±0.02 vs 0.40Β±0.04) and URB-597 (1.08Β±0.09 vs 0.83Β±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25Β±0.04 vs 0.40Β±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17Β±0.02 vs 0.27Β±0.02), a CB2 antagonist decreased it (0.17Β±0.02 vs 0.12Β±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies
    • …
    corecore