25 research outputs found
Ariel - Volume 3 Number 7
Editors
Richard J. Bonanno
Robin A. Edwards
Associate Editors
Steven Ager
Tom Williams
Lay-out Editor
Eugenia Miller
Contributing Editors
Paul Bialas
Robert Breckenridge
David Jacoby
Mike LeWitt
Terry Burt
Michael Leo
Editors Emeritus
Delvyn C. Case, Jr.
Paul M. Fernhof
Ariel - Volume 4 Number 2
Editors
David A. Jacoby
Eugenia Miller
Tom Williams
Associate Editors
Paul Bialas
Terry Burt
Michael Leo
Gail Tenikat
Editor Emeritus and Business Manager
Richard J. Bonnano
Movie Editor
Robert Breckenridge
Staff
Richard Blutstein
Mary F. Buechler
Steve Glinks
Len Grasman
Alice M. Johnson
J. D. Kanofsky
Tom Lehman
Dave Mayer
Bernie Odd
Ariel - Volume 5 Number 6
Editors
J.D. Kanofsky
Mark Dembert
Entertainment
Robert Breckenridge
Joe Conti
Gary Kaskey
Photographer
Scot Kastner
Overseas Editor
Mike Sinason
Circulation
Jay Amsterdam
Humorist
Jim McCann
Staff
Ken Jaffe
Bob Sklaroff
Janet Welsh
Dave Jacoby
Phil Nimoityn
Frank Chervane
Ariel - Volume 4 Number 3
Editors
David A. Jacoby
Eugenia Miller
Tom Williams
Associate Editors
Paul Bialas
Terry Burt
Michael Leo
Gail Tenikat
Editor Emeritus and Business Manager
Richard J. Bonnano
Movie Editor
Robert Breckenridge
Staff
Richard Blutstein
Mary F. Buechler
Steve Glinks
Len Grasman
Alice M. Johnson
J.D. Kanofsky
Tom Lehman
Dave Mayer
Bernie Odd
Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.
Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis
Outcomes and Pattern of Care for Spinal Myxopapillary Ependymoma in the Modern Era-A Population-Based Observational Study
(1) Background: Myxopapillary ependymoma (MPE) is a rare tumor of the spine, typically slow-growing and low-grade. Optimal management strategies remain unclear due to limited evidence given the low incidence of the disease. (2) Methods: We analyzed data from 1197 patients with spinal MPE from the Surveillance, Epidemiology, and End Results (SEER) database (2000-2020). Patient demographics, treatment modalities, and survival outcomes were examined using statistical analyses. (3) Results: Most patients were White (89.9%) with a median age at diagnosis of 42 years. Surgical resection was performed in 95% of cases. The estimated 10-year overall survival was 91.4%. Younger age (hazard ratio (HR) = 1.09, p \u3c 0.001) and receipt of surgery (HR = 0.43, p = 0.007) were associated with improved survival. Surprisingly, male sex was associated with worse survival (HR = 1.86, p = 0.008) and a younger age at diagnosis compared to females. (4) Conclusions: This study, the largest of its kind, underscores the importance of surgical resection in managing spinal MPE. The unexpected association between male sex and worse survival warrants further investigation into potential sex-specific pathophysiological factors influencing prognosis. Despite limitations, our findings contribute valuable insights for guiding clinical management strategies for spinal MPE
Structure and Function of the Hair Cell Ribbon Synapse
Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years
An extreme wind event at Casey Station, Antarctica
Model output, satellite data, and in situ observations are used to investigate the conditions that gave rise to an extreme wind event at the Australian Casey Station (66.27°S, 110.53°E) on the coast of East Antarctica. The event took place over the period March 20–22, 1992, and resulted in Casey Station's highest ever wind gust for March (66.9 m s−1, 130 knots) and 10 m mean winds of near 50 m s−1. The event occurred when a deep low was located just north of the coast and there was high surface pressure inland. The rapid deepening of the low took place within a strong baroclinic zone lying north-south between a cold trough and a ridge bringing very warm air southward. A conceptual model is proposed for the very strong winds experienced at Casey Station. Key elements of the model are (1) a synoptic-scale high-low pressure couplet, providing a strengthening pressure gradient; (2) entrainment of radiatively cooled air by the supercritical synoptic gradient, leading to downslope flow; (3) the acceleration of the wind down the lee slope of Law Dome, occurring primarily in response to a topographically induced, long-period, vertically propagating gravity wave; and (4) sources of negative buoyancy, including prestorm radiatively cooled air and, later in the storm, maritime air cooled by heat flux to the ice surface. The topographically induced gravity wave increases the horizontal temperature difference, thus increasing the negative buoyancy of the surface airflow