72 research outputs found
Genome-wide miRNAprofiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis
miRNA deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1âpositive MCL (n = 30) and cyclin D1ânegative MCL (n =7) and compared them with small lymphocytic leukemia/ lymphoma (n =12), aggressive B-cell lymphomas (n =138), normal B-cell subsets, and stromal cells.We identified a 19-miRNA classifier that included 6 up-regulated miRNAs and 13 down regulated miRNA that was able to distinguish MCL from other aggressive lymphomas. Some of the up-regulated miRNAs are highly expressed in naive B cells. This miRNAclassifier showed consistent results in formalinfixed paraffin-embedded tissues and was able to distinguish cyclin D1ânegative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from small lymphocytic leukemia/lymphoma, dominated by 23 up-regulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL patients demonstrated a cluster characterized by high expression of miRNAs from the polycistronic miR17-92 cluster and its paralogs, miR-106a-363 and miR-106b-25, and associated with high proliferation gene signature. The other clusters showed enrichment of stroma-associated miRNAs, and also had higher expression of stroma-associated genes. Our clinical outcome analysis in the present study suggested that miRNAs can serve as prognosticators
Loss of signalling via Gα13 in germinal center B-cell-derived lymphoma
Germinal centre B-cell-like diffuse large B-cell lymphoma (GCB-DLBCL) is a common malignancy, yet the signalling pathways that are deregulated and the factors leading to its systemic dissemination are poorly defined1,2. Work in mice showed that sphingosine-1-phosphate receptor-2 (S1PR2), a Gα12 and Gα13 coupled receptor, promotes growth regulation and local confinement of germinal centre B cells3,4. Recent deep sequencing studies of GCB-DLBCL have revealed mutations in many genes in this cancer, including in GNA13 (encoding Gα13) and S1PR2 (refs 5,6, 7). Here we show, using in vitro and in vivo assays, that GCB-DLBCL-associated mutations occurring in S1PR2 frequently disrupt the receptor's Akt and migration inhibitory functions. Gα13-deficient mouse germinal centre B cells and human GCB-DLBCL cells were unable to suppress pAkt and migration in response to S1P, and Gα13-deficient mice developed germinal centre B-cell-derived lymphoma. Germinal centre B cells, unlike most lymphocytes, are tightly confined in lymphoid organs and do not recirculate. Remarkably, deficiency in Gα13, but not S1PR2, led to germinal centre B-cell dissemination into lymph and blood. GCB-DLBCL cell lines frequently carried mutations in the Gα13 effector ARHGEF1, and Arhgef1 deficiency also led to germinal centre B-cell dissemination. The incomplete phenocopy of Gα13- and S1PR2 deficiency led us to discover that P2RY8, an orphan receptor that is mutated in GCB-DLBCL and another germinal centre B-cell-derived malignancy, Burkitt's lymphoma, also represses germinal centre B-cell growth and promotes confinement via Gα13. These findings identify a Gα13-dependent pathway that exerts dual actions in suppressing growth and blocking dissemination of germinal centre B cells that is frequently disrupted in germinal centre B-cell-derived lymphoma
Molecular diagnosis of Burkitt\u27s lymphoma.
BACKGROUND: The distinction between Burkitt\u27s lymphoma and diffuse large-B-cell lymphoma is crucial because these two types of lymphoma require different treatments. We examined whether gene-expression profiling could reliably distinguish Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma.
METHODS: Tumor-biopsy specimens from 303 patients with aggressive lymphomas were profiled for gene expression and were also classified according to morphology, immunohistochemistry, and detection of the t(8;14) c-myc translocation.
RESULTS: A classifier based on gene expression correctly identified all 25 pathologically verified cases of classic Burkitt\u27s lymphoma. Burkitt\u27s lymphoma was readily distinguished from diffuse large-B-cell lymphoma by the high level of expression of c-myc target genes, the expression of a subgroup of germinal-center B-cell genes, and the low level of expression of major-histocompatibility-complex class I genes and nuclear factor-kappaB target genes. Eight specimens with a pathological diagnosis of diffuse large-B-cell lymphoma had the typical gene-expression profile of Burkitt\u27s lymphoma, suggesting they represent cases of Burkitt\u27s lymphoma that are difficult to diagnose by current methods. Among 28 of the patients with a molecular diagnosis of Burkitt\u27s lymphoma, the overall survival was superior among those who had received intensive chemotherapy regimens instead of lower-dose regimens.
CONCLUSIONS: Gene-expression profiling is an accurate, quantitative method for distinguishing Burkitt\u27s lymphoma from diffuse large-B-cell lymphoma
Molecular Diagnosis of Primary Mediastinal B Cell Lymphoma Identifies a Clinically Favorable Subgroup of Diffuse Large B Cell Lymphoma Related to Hodgkin Lymphoma
Using current diagnostic criteria, primary mediastinal B cell lymphoma (PMBL) cannot be distinguished from other types of diffuse large B cell lymphoma (DLBCL) reliably. We used gene expression profiling to develop a more precise molecular diagnosis of PMBL. PMBL patients were considerably younger than other DLBCL patients, and their lymphomas frequently involved other thoracic structures but not extrathoracic sites typical of other DLBCLs. PMBL patients had a relatively favorable clinical outcome, with a 5-yr survival rate of 64% compared with 46% for other DLBCL patients. Gene expression profiling strongly supported a relationship between PMBL and Hodgkin lymphoma: over one third of the genes that were more highly expressed in PMBL than in other DLBCLs were also characteristically expressed in Hodgkin lymphoma cells. PDL2, which encodes a regulator of T cell activation, was the gene that best discriminated PMBL from other DLBCLs and was also highly expressed in Hodgkin lymphoma cells. The genomic loci for PDL2 and several neighboring genes were amplified in over half of the PMBLs and in Hodgkin lymphoma cell lines. The molecular diagnosis of PMBL should significantly aid in the development of therapies tailored to this clinically and pathogenetically distinctive subgroup of DLBCL
Expression of vascular endothelial growth factor and its receptors in rosacea
BACKGROUND: Rosacea is a common chronic disease of unclear pathogenesis, characterised by inflammation and vascular abnormalities of the facial skin and ocular surface. Recognising that vascular endothelial growth factor (VEGF) is vasoactive and has inflammatory activities, the expression of this molecule and its receptors, VEGFâR1 and VEGFâR2, in rosacea was investigated. METHODS: Formalinâfixed, paraffin waxâembedded sections of skin obtained from 20 patients with rosacea were immunostained to detect expression of VEGF, VEGFâR1 and VEGFâR2, using an indirect methodology incorporating antigen retrieval. Adjacent sections were stained with haematoxylin and eosin. RESULTS: Biopsy specimens were characterised by perivascular and perifollicular lymphohistiocytic infiltration and dilated vascular channels. In addition to keratinocyte and epithelial staining, which was also noted in normal skin, vascular endothelium frequently stained positive for VEGFâR1 (14/20, 70%) and VEGFâR2 (20/20, 100%), but infrequently for VEGF (2/20, 10%). In most specimens, infiltrating leucocytes, including lymphocytes, macrophages and plasma cells, expressed VEGF (17/20, 85%), VEGFâR1 (20/20, 100%) and VEGFâR2 (20/20, 100%). CONCLUSION: Expression of VEGF receptors, both by vascular endothelium and infiltrating mononuclear cells, is observed in rosacea. Although not expressed by endothelium, VEGF is present in epidermis and epithelium, and is expressed by infiltrating cells. VEGF receptorâligand binding may contribute to the vascular changes and cellular infiltration that occurs in rosacea
- âŠ