290 research outputs found

    An evaluation of carbon offset supplementation options for beef production systems on coastal speargrass in central Queensland, Australia

    Get PDF
    In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the 'reducing GHG emissions by feeding nitrates to beef cattle' methodology and the 'beef cattle herd management' methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a 'beef cattle herd management' method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options. © CSIRO 2016

    Freezing in random graph ferromagnets

    Full text link
    Using T=0 Monte Carlo and simulated annealing simulation, we study the energy relaxation of ferromagnetic Ising and Potts models on random graphs. In addition to the expected exponential decay to a zero energy ground state, a range of connectivities for which there is power law relaxation and freezing to a metastable state is found. For some connectivities this freezing persists even using simulated annealing to find the ground state. The freezing is caused by dynamic frustration in the graphs, and is a feature of the local search-nature of the Monte Carlo dynamics used. The implications of the freezing on agent-based complex systems models are briefly considered.Comment: Published version: 1 reference deleted, 1 word added. 4 pages, 5 figure

    Fate of Zero-Temperature Ising Ferromagnets

    Full text link
    We investigate the relaxation of homogeneous Ising ferromagnets on finite lattices with zero-temperature spin-flip dynamics. On the square lattice, a frozen two-stripe state is apparently reached approximately 1/4 of the time, while the ground state is reached otherwise. The asymptotic relaxation is characterized by two distinct time scales, with the longer stemming from the influence of a long-lived diagonal stripe ``defect''. In greater than two dimensions, the probability to reach the ground state rapidly vanishes as the size increases and the system typically ends up wandering forever within an iso-energy set of stochastically ``blinking'' metastable states.Comment: 4 pages in column format, 6 figure

    Exponents appearing in heterogeneous reaction-diffusion models in one dimension

    Full text link
    We study the following 1D two-species reaction diffusion model : there is a small concentration of B-particles with diffusion constant DBD_B in an homogenous background of W-particles with diffusion constant DWD_W; two W-particles of the majority species either coagulate (W+WWW+W \longrightarrow W) or annihilate (W+WW+W \longrightarrow \emptyset) with the respective probabilities pc=(q2)/(q1) p_c=(q-2)/(q-1) and pa=1/(q1)p_a=1/(q-1); a B-particle and a W-particle annihilate (W+BW+B \longrightarrow \emptyset) with probability 1. The exponent θ(q,λ=DB/DW)\theta(q,\lambda=D_B/D_W) describing the asymptotic time decay of the minority B-species concentration can be viewed as a generalization of the exponent of persistent spins in the zero-temperature Glauber dynamics of the 1D qq-state Potts model starting from a random initial condition : the W-particles represent domain walls, and the exponent θ(q,λ)\theta(q,\lambda) characterizes the time decay of the probability that a diffusive "spectator" does not meet a domain wall up to time tt. We extend the methods introduced by Derrida, Hakim and Pasquier ({\em Phys. Rev. Lett.} {\bf 75} 751 (1995); Saclay preprint T96/013, to appear in {\em J. Stat. Phys.} (1996)) for the problem of persistent spins, to compute the exponent θ(q,λ)\theta(q,\lambda) in perturbation at first order in (q1)(q-1) for arbitrary λ\lambda and at first order in λ\lambda for arbitrary qq.Comment: 29 pages. The three figures are not included, but are available upon reques

    Slow Relaxation in a Constrained Ising Spin Chain: a Toy Model for Granular Compaction

    Full text link
    We present detailed analytical studies on the zero temperature coarsening dynamics in an Ising spin chain in presence of a dynamically induced field that favors locally the `-' phase compared to the `+' phase. We show that the presence of such a local kinetic bias drives the system into a late time state with average magnetization m=-1. However the magnetization relaxes into this final value extremely slowly in an inverse logarithmic fashion. We further map this spin model exactly onto a simple lattice model of granular compaction that includes the minimal microscopic moves needed for compaction. This toy model then predicts analytically an inverse logarithmic law for the growth of density of granular particles, as seen in recent experiments and thereby provides a new mechanism for the inverse logarithmic relaxation. Our analysis utilizes an independent interval approximation for the particle and the hole clusters and is argued to be exact at late times (supported also by numerical simulations).Comment: 9 pages RevTeX, 1 figures (.eps

    From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    Get PDF
    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: (i) through single point inversions (which encompasses also the analysis of MHD wave modes), (ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and (iii) using tomographic techniques.Comment: Accepted by Solar Physics, April 201

    Dynamics of an Unbounded Interface Between Ordered Phases

    Full text link
    We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine specifically the cases where the interface initially has either one or two corners. In both examples, the interface evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a correspondence between the interface and the Young tableau that represents the partition of the integers.Comment: 9 pages, 11 figures, 2-column revtex4 format. V2: references added and discussion section expanded slightly. Final version for PRE. V3: A few small additional editorial change

    Steady State Behavior of Mechanically Perturbed Spin Glasses and Ferromagnets

    Full text link
    A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity is considered, like granular media these systems have an extensive entropy of metastable states. We consider the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable state. We then introduce a tapping mechanism, analogous to that of real experiments on granular media, this tapping, corresponding to flipping simultaneously any spin with probability pp, leads to stationary regime with a steady state energy E(p)E(p). We explicitly solve this problem for the one dimensional ferromagnet and ±J\pm J spin glass and carry out extensive numerical simulations for spin systems of higher connectivity. The link with the density of metastable states at fixed energy and the idea of Edwards that one may construct a thermodynamics with a flat measure over metastable states is discussed. In addition our simulations on the ferromagnetic systems reveal a novel first order transition, whereas the usual thermodynamic transition on these graphs is second order.Comment: 11 pages, 7 figure

    Three Dimensional MHD Wave Propagation and Conversion to Alfven Waves near the Solar Surface. I. Direct Numerical Solution

    Full text link
    The efficacy of fast/slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfven and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfven wave may couple to the magneto-acoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical ``scattering experiment'', placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvenic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfven waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfven fluxes are produced when the field is inclined 30-40 degrees from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60-80 degrees.Comment: Accepted for the HELAS II/ SOHO 19/ GONG 2007 Topical Issue of Solar Physic

    Fraction of uninfected walkers in the one-dimensional Potts model

    Full text link
    The dynamics of the one-dimensional q-state Potts model, in the zero temperature limit, can be formulated through the motion of random walkers which either annihilate (A + A -> 0) or coalesce (A + A -> A) with a q-dependent probability. We consider all of the walkers in this model to be mutually infectious. Whenever two walkers meet, they experience mutual contamination. Walkers which avoid an encounter with another random walker up to time t remain uninfected. The fraction of uninfected walkers is investigated numerically and found to decay algebraically, U(t) \sim t^{-\phi(q)}, with a nontrivial exponent \phi(q). Our study is extended to include the coupled diffusion-limited reaction A+A -> B, B+B -> A in one dimension with equal initial densities of A and B particles. We find that the density of walkers decays in this model as \rho(t) \sim t^{-1/2}. The fraction of sites unvisited by either an A or a B particle is found to obey a power law, P(t) \sim t^{-\theta} with \theta \simeq 1.33. We discuss these exponents within the context of the q-state Potts model and present numerical evidence that the fraction of walkers which remain uninfected decays as U(t) \sim t^{-\phi}, where \phi \simeq 1.13 when infection occurs between like particles only, and \phi \simeq 1.93 when we also include cross-species contamination.Comment: Expanded introduction with more discussion of related wor
    corecore