4,970 research outputs found

    Global Persistence Exponent for Critical Dynamics

    Full text link
    A `persistence exponent' θ\theta is defined for nonequilibrium critical phenomena. It describes the probability, p(t)tθp(t) \sim t^{-\theta}, that the global order parameter has not changed sign in the time interval tt following a quench to the critical point from a disordered state. This exponent is calculated in mean-field theory, in the n=n=\infty limit of the O(n)O(n) model, to first order in ϵ=4d\epsilon = 4-d, and for the 1-d Ising model. Numerical results are obtained for the 2-d Ising model. We argue that θ\theta is a new independent exponent.Comment: 4 pages, revtex, one figur

    Non-equilibrium Dynamics Following a Quench to the Critical Point in a Semi-infinite System

    Full text link
    We study the non-equilibrium dynamics (purely dissipative and relaxational) in a semi-infinite system following a quench from the high temperature disordered phase to its critical temperature. We show that the local autocorrelation near the surface of a semi-infinite system decays algebraically in time with a new exponent which is different from the bulk. We calculate this new non-equilibrium surface exponent in several cases, both analytically and numerically.Comment: revtex, 9 pages, 2 figures available from the author

    On the Use of Finite-Size Scaling to Measure Spin-Glass Exponents

    Full text link
    Finite-size scaling (FSS) is a standard technique for measuring scaling exponents in spin glasses. Here we present a critique of this approach, emphasizing the need for all length scales to be large compared to microscopic scales. In particular we show that the replacement, in FSS analyses, of the correlation length by its asymptotic scaling form can lead to apparently good scaling collapses with the wrong values of the scaling exponents.Comment: RevTeX, 5 page

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.

    Phase separation in an homogeneous shear flow: Morphology, growth laws and dynamic scaling

    Full text link
    We investigate numerically the influence of an homogeneous shear flow on the spinodal decomposition of a binary mixture by solving the Cahn-Hilliard equation in a two-dimensional geometry. Several aspects of this much studied problem are clarified. Our numerical data show unambiguously that, in the shear flow, the domains have on average an elliptic shape. The time evolution of the three parameters describing this ellipse are obtained for a wide range of shear rates. For the lowest shear rates investigated, we find the growth laws for the two principal axis R(t)constantR_\perp (t) \sim constant, R(t)tR_\parallel(t) \sim t, while the mean orientation of the domains with respect to the flow is inversely proportional to the strain. This implies that when hydrodynamics is neglected a shear flow does not stop the domain growth process. We investigate also the possibility of dynamic scaling, and show that only a non trivial form of scaling holds, as predicted by a recent analytical approach to the case of a non-conserved order parameter. We show that a simple physical argument may account for these results.Comment: Version accepted for publication - Physical Review

    Non-Markovian Persistence and Nonequilibrium Critical Dynamics

    Full text link
    The persistence exponent \theta for the global order parameter, M(t), of a system quenched from the disordered phase to its critical point describes the probability, p(t) \sim t^{-\theta}, that M(t) does not change sign in the time interval t following the quench. We calculate \theta to O(\epsilon^2) for model A of critical dynamics (and to order \epsilon for model C) and show that at this order M(t) is a non-Markov process. Consequently, \theta is a new exponent. The calculation is performed by expanding around a Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and Sire [Phys. Rev. Lett. _77_, 1420 (1996); cond-mat/9604151].Comment: 4 pages, Revtex, no figures, requires multicol.st

    Phase Ordering Kinetics of One-Dimensional Non-Conserved Scalar Systems

    Full text link
    We consider the phase-ordering kinetics of one-dimensional scalar systems. For attractive long-range (r(1+σ)r^{-(1+\sigma)}) interactions with σ>0\sigma>0, ``Energy-Scaling'' arguments predict a growth-law of the average domain size Lt1/(1+σ)L \sim t^{1/(1+\sigma)} for all σ>0\sigma >0. Numerical results for σ=0.5\sigma=0.5, 1.01.0, and 1.51.5 demonstrate both scaling and the predicted growth laws. For purely short-range interactions, an approach of Nagai and Kawasaki is asymptotically exact. For this case, the equal-time correlations scale, but the time-derivative correlations break scaling. The short-range solution also applies to systems with long-range interactions when σ\sigma \rightarrow \infty, and in that limit the amplitude of the growth law is exactly calculated.Comment: 19 pages, RevTex 3.0, 8 FIGURES UPON REQUEST, 1549

    Electron Impact Excitation Cross Sections for Hydrogen-Like Ions

    Full text link
    We present cross sections for electron-impact-induced transitions n --> n' in hydrogen-like ions C 5+, Ne 9+, Al 12+, and Ar 17+. The cross sections are computed by Coulomb-Born with exchange and normalization (CBE) method for all transitions with n < n' < 7 and by convergent close-coupling (CCC) method for transitions with n 2s and 1s --> 2p are presented as well. The CCC and CBE cross sections agree to better than 10% with each other and with earlier close-coupling results (available for transition 1 --> 2 only). Analytical expression for n --> n' cross sections and semiempirical formulae are discussed.Comment: RevTeX, 5 pages, 13 PostScript figures, submitted to Phys. Rev.

    Scaling of stiffness energy for 3d +/-J Ising spin glasses

    Full text link
    Large numbers of ground states of 3d EA Ising spin glasses are calculated for sizes up to 10^3 using a combination of a genetic algorithm and Cluster-Exact Approximation. A detailed analysis shows that true ground states are obtained. The ground state stiffness (or domain wall) energy D is calculated. A D ~ L^t behavior with t=0.19(2) is found which strongly indicates that the 3d model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 4 pages, 4 figure

    The Effect of Shear on Phase-Ordering Dynamics with Order-Parameter-Dependent Mobility: The Large-n Limit

    Full text link
    The effect of shear on the ordering-kinetics of a conserved order-parameter system with O(n) symmetry and order-parameter-dependent mobility \Gamma({\vec\phi}) \propto (1- {\vec\phi} ^2/n)^\alpha is studied analytically within the large-n limit. In the late stage, the structure factor becomes anisotropic and exhibits multiscaling behavior with characteristic length scales (t^{2\alpha+5}/\ln t)^{1/2(\alpha+2)} in the flow direction and (t/\ln t)^{1/2(\alpha+2)} in directions perpendicular to the flow. As in the \alpha=0 case, the structure factor in the shear-flow plane has two parallel ridges.Comment: 6 pages, 2 figure
    corecore