Abstract

We consider the phase-ordering kinetics of one-dimensional scalar systems. For attractive long-range (r(1+σ)r^{-(1+\sigma)}) interactions with σ>0\sigma>0, ``Energy-Scaling'' arguments predict a growth-law of the average domain size Lt1/(1+σ)L \sim t^{1/(1+\sigma)} for all σ>0\sigma >0. Numerical results for σ=0.5\sigma=0.5, 1.01.0, and 1.51.5 demonstrate both scaling and the predicted growth laws. For purely short-range interactions, an approach of Nagai and Kawasaki is asymptotically exact. For this case, the equal-time correlations scale, but the time-derivative correlations break scaling. The short-range solution also applies to systems with long-range interactions when σ\sigma \rightarrow \infty, and in that limit the amplitude of the growth law is exactly calculated.Comment: 19 pages, RevTex 3.0, 8 FIGURES UPON REQUEST, 1549

    Similar works

    Full text

    thumbnail-image

    Available Versions