Abstract

A `persistence exponent' θ\theta is defined for nonequilibrium critical phenomena. It describes the probability, p(t)tθp(t) \sim t^{-\theta}, that the global order parameter has not changed sign in the time interval tt following a quench to the critical point from a disordered state. This exponent is calculated in mean-field theory, in the n=n=\infty limit of the O(n)O(n) model, to first order in ϵ=4d\epsilon = 4-d, and for the 1-d Ising model. Numerical results are obtained for the 2-d Ising model. We argue that θ\theta is a new independent exponent.Comment: 4 pages, revtex, one figur

    Similar works