34 research outputs found

    Brane-World Cosmology, Bulk Scalars and Perturbations

    Get PDF
    We investigate aspects of cosmology in brane world theories with a bulk scalar field. We concentrate on a recent model motivated from supergravity in singular spaces. After discussing the background evolution of such a brane-world, we present the evolution of the density contrast. We compare our results to those obtained in the (second) Randall-Sundrum scenario and usual 4D scalar-tensor theories.Comment: 29 pages, one figure, JHEP3-styl

    Swampland and screened modified gravity

    Get PDF
    We consider the implications of the swampland conjectures on scalar-tensor theories defined in the Einstein frame in which the scalar interaction is screened. We show that chameleon models are not in the swampland provided the coupling to matter is larger than unity and the mass of the scalar field is much larger than the Hubble rate. We apply these conditions to the inverse power law chameleon and the symmetron. We then focus on the dilaton of string theory in the strong coupling limit, as defined in the string frame. We show that solar system tests of gravity imply that viable dilaton models are not in the swampland. In the future of the Universe, if the low-energy description with a single scalar is still valid and the coupling to matter remains finite, we find that the scalar field energy density must vanish for models with the chameleon and symmetron mechanisms. Hence in these models dark energy is only a transient phenomenon. This is not the case for the strongly coupled dilaton, which keeps evolving slowly, leading to a quasi–de Sitter spacetime

    Pre-Big Bang Scenario on Self-T-Dual Bouncing Branes

    Get PDF
    We consider a new class of 5-dimensional dilatonic actions which are invariant under T-duality transformations along three compact coordinates, provided that an appropriate potential is chosen. We show that the invariance remains when we add a boundary term corresponding to a moving 3-brane, and we study the effects of the T-duality symmetry on the brane cosmological equations. We find that T-duality transformations in the bulk induce scale factor duality on the brane, together with a change of sign of the pressure of the brane cosmological matter. However, in a remarkable analogy with the Pre-Big Bang scenario, the cosmological equations are unchanged. Finally, we propose a model where the dual phases are connected through a scattering of the brane induced by an effective potential. We show how this model can realise a smooth, non-singular transition between a pre-Big Bang superinflationary Universe and a post-Big Bang accelerating Universe.Comment: 18 pages, minor typos corrected, Sec. 2 expanded with more details on the self-T-dual background, Sec.4 and 5 revised accordingly. Version to appear on JCA

    Four--dimensional Gravity from Singular Spaces

    Get PDF
    The modification to four--dimensional Einstein gravity at low energy in two brane models is investigated within supergravity in singular spaces. Using perturbation theory around a static BPS background, we study the effective four--dimensional gravitational theory, a scalar--tensor theory, and derive the Brans--Dicke parameter when matter is present on the positive tension brane only. We show there is an attractor mechanism towards general relativity in the matter dominated era. The dynamics of the interbrane distance are discussed. Finally, when matter lives on both branes, we find that there is a violation of the equivalence principle whose magnitude is governed by the warping of the extra dimension.Comment: 9 pages, LaTe
    corecore