12 research outputs found

    Systematic bias in estimates of reproductive potential of an Atlantic cod (Gadus morhua) stock: implications for stock–recruit theory and management

    Get PDF
    Stock–recruit relationships that use spawning stock biomass (SSB) to represent reproductive potential assume that the proportion of SSB composed of females and the relative fecundity (number of eggs produced per unit mass) are both constant over time. To test these two assumptions, female-only spawner biomass (FSB) and total egg production (TEP) were estimated for the Northeast Arctic stock of Atlantic cod (Gadus morhua) over a 56-year time period. The proportion of females (FSB/SSB) varied between 24% and 68%, and the variation was systematic with length such that SSB became more female-biased as the mean length of spawners increased. Relative fecundity of the stock (TEP/SSB) varied between 115 and 355 eggs·g–1 and was significantly, positively correlated with mean length of spawners. Both FSB and TEP gave a different interpretation of the recruitment response to reductions in stock size (overcompensatory) compared with that obtained using SSB (either compensatory or depensatory). There was no difference between SSB and FSB in the assessment of stock status; however, in recent years (1980–2001) TEP fell below the threshold level at which recruitment becomes impaired more frequently than did SSB. This suggests that using SSB as a measure of stock reproductive potential could lead to overly optimistic assessments of stock status

    SPAWNING VOCALIZATIONS IN MALE FRESH-WATER GOBIIDS (PISCES, GOBIIDAE)

    No full text
    Males of two freshwater Italian gobies, the common goby, Padogobius martensii and the panzarolo goby, Knipowitschia punctatissima, emit trains of low-frequency pulses, i.e. 'drumming' sounds, in the presence of a ripe female in the nest. In P. martensii the drumming sound is usually followed by a tonal. sound (complex sound). Examination of the pulse structure suggests that these sounds are produced by muscles acting on the swimbladder. Both species exhibited high emission rates of spawning sounds, especially before the beginning of oviposition. Moreover, spawning sound production ceased only after the female abandoned the nest, which always occurred at the end of oviposition. This is the first study reporting the production among fishes of distinct sounds during protracted spawning. Unlike sounds produced just before mating by fishes with plank tonic or demersal zygotes, the spawning sound production of these gobies does not function to coordinate mating events in the nest. The presence of a two-part vocalization by male P. martensii even suggests a functional dichotomy of spawning sounds in this species

    Congenital Heart Disease

    No full text
    corecore