2,530 research outputs found

    Intersection cohomology of Drinfeld's compactifications

    Full text link
    Let XX be a smooth complete curve, GG be a reductive group and PGP\subset G a parabolic. Following Drinfeld, one defines a compactification \widetilde{\on{Bun}}_P of the moduli stack of PP-bundles on XX. The present paper is concerned with the explicit description of the Intersection Cohomology sheaf of \widetilde{\on{Bun}}_P. The description is given in terms of the combinatorics of the Langlands dual Lie algebra gˇ\check{\mathfrak g}.Comment: An erratum adde

    A finite analog of the AGT relation I: finite W-algebras and quasimaps' spaces

    Full text link
    Recently Alday, Gaiotto and Tachikawa proposed a conjecture relating 4-dimensional super-symmetric gauge theory for a gauge group G with certain 2-dimensional conformal field theory. This conjecture implies the existence of certain structures on the (equivariant) intersection cohomology of the Uhlenbeck partial compactification of the moduli space of framed G-bundles on P^2. More precisely, it predicts the existence of an action of the corresponding W-algebra on the above cohomology, satisfying certain properties. We propose a "finite analog" of the (above corollary of the) AGT conjecture. Namely, we replace the Uhlenbeck space with the space of based quasi-maps from P^1 to any partial flag variety G/P of G and conjecture that its equivariant intersection cohomology carries an action of the finite W-algebra U(g,e) associated with the principal nilpotent element in the Lie algebra of the Levi subgroup of P; this action is expected to satisfy some list of natural properties. This conjecture generalizes the main result of arXiv:math/0401409 when P is the Borel subgroup. We prove our conjecture for G=GL(N), using the works of Brundan and Kleshchev interpreting the algebra U(g,e) in terms of certain shifted Yangians.Comment: minor change

    Maximum likelihood estimation of cloud height from multi-angle satellite imagery

    Full text link
    We develop a new estimation technique for recovering depth-of-field from multiple stereo images. Depth-of-field is estimated by determining the shift in image location resulting from different camera viewpoints. When this shift is not divisible by pixel width, the multiple stereo images can be combined to form a super-resolution image. By modeling this super-resolution image as a realization of a random field, one can view the recovery of depth as a likelihood estimation problem. We apply these modeling techniques to the recovery of cloud height from multiple viewing angles provided by the MISR instrument on the Terra Satellite. Our efforts are focused on a two layer cloud ensemble where both layers are relatively planar, the bottom layer is optically thick and textured, and the top layer is optically thin. Our results demonstrate that with relative ease, we get comparable estimates to the M2 stereo matcher which is the same algorithm used in the current MISR standard product (details can be found in [IEEE Transactions on Geoscience and Remote Sensing 40 (2002) 1547--1559]). Moreover, our techniques provide the possibility of modeling all of the MISR data in a unified way for cloud height estimation. Research is underway to extend this framework for fast, quality global estimates of cloud height.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS243 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Proposal to demonstrate the non-locality of Bohmian mechanics with entangled photons

    Full text link
    Bohmian mechanics reproduces all statistical predictions of quantum mechanics, which ensures that entanglement cannot be used for superluminal signaling. However, individual Bohmian particles can experience superluminal influences. We propose to illustrate this point using a double double-slit setup with path-entangled photons. The Bohmian velocity field for one of the photons can be measured using a recently demonstrated weak-measurement technique. The found velocities strongly depend on the value of a phase shift that is applied to the other photon, potentially at spacelike separation.Comment: 6 pages, 4 figure

    Termination of Triangular Integer Loops is Decidable

    Get PDF
    We consider the problem whether termination of affine integer loops is decidable. Since Tiwari conjectured decidability in 2004, only special cases have been solved. We complement this work by proving decidability for the case that the update matrix is triangular.Comment: Full version (with proofs) of a paper published in the Proceedings of the 31st International Conference on Computer Aided Verification (CAV '19), New York, NY, USA, Lecture Notes in Computer Science, Springer-Verlag, 201

    Characterization of Probability Law by Absolute Moments of Its Partial Sums

    Get PDF
    If Sn = X1 + . . . + Xn, where Xi are independent and identically distributed (i.i.d.) standard normal, then E|Sn| ≡ √2n/π, n ≧ 0. We show that no other symmetric law has exactly these “moments”; the general case remains (stubbornly) open. If X is standard two-sided exponential, then E|Sn| = 2n2-2n(2n/n). We show the latter moments are obtained exactly for all n also for Xi ~ B(2;0.5), the sum of two standard (± 1-valued) Bernoulli’s as well as for many other laws including unsymmetrical ones: Xi ~ G - 1, where G is geometric with mean 1, is one example. Our interest in this delicate nonlinear inverse problem (which was initiated by Klebanov, cf. [12]) of inverting the moments to recover the law was also drawn by the fact that it gives a way to study positive definite functions through the formula E|Sn| = (2/π) ∫0∞Re(1 - φn(1 / u))du, n ≧ 0, expressing E|Sn| in terms of the moments of φ, where φ is the characteristic function of X, φ(u) = Eexp(iuX). We show that if for some b \u3e 0, ψb (u) = φ (btan (u / b)) is a positive definite function then the distributions corresponding to φ and ψb have the same E|Sn| moments for all n. We show that if X is Bernoulli with zero mean and values ±1 then the moments characterize the distribution uniquely even among nonsymmetric laws. In general however we expect that the moments do not characterize the law, and this may well be the only nontrivial case of uniqueness. We extend some of our results to the case of pth moments, p different from an even integer
    corecore