Recently Alday, Gaiotto and Tachikawa proposed a conjecture relating
4-dimensional super-symmetric gauge theory for a gauge group G with certain
2-dimensional conformal field theory. This conjecture implies the existence of
certain structures on the (equivariant) intersection cohomology of the
Uhlenbeck partial compactification of the moduli space of framed G-bundles on
P^2. More precisely, it predicts the existence of an action of the
corresponding W-algebra on the above cohomology, satisfying certain properties.
We propose a "finite analog" of the (above corollary of the) AGT conjecture.
Namely, we replace the Uhlenbeck space with the space of based quasi-maps from
P^1 to any partial flag variety G/P of G and conjecture that its equivariant
intersection cohomology carries an action of the finite W-algebra U(g,e)
associated with the principal nilpotent element in the Lie algebra of the Levi
subgroup of P; this action is expected to satisfy some list of natural
properties. This conjecture generalizes the main result of arXiv:math/0401409
when P is the Borel subgroup. We prove our conjecture for G=GL(N), using the
works of Brundan and Kleshchev interpreting the algebra U(g,e) in terms of
certain shifted Yangians.Comment: minor change