371 research outputs found
Bichromatic Local Oscillator for Detection of Two-Mode Squeezed States of Light
We present a new technique for the detection of two-mode squeezed states of
light that allows for a simple characterization of these quantum states. The
usual detection scheme, based on heterodyne measurements, requires the use of a
local oscillator with a frequency equal to the mean of the frequencies of the
two modes of the squeezed field. As a result, unless the two modes are close in
frequency, a high-frequency shot-noise-limited detection system is needed. We
propose the use of a bichromatic field as the local oscillator in the
heterodyne measurements. By the proper selection of the frequencies of the
bichromatic field, it is possible to arbitrarily select the frequency around
which the squeezing information is located, thus making it possible to use a
low-bandwidth detection system and to move away from any excess noise present
in the system.Comment: 11 pages, 3 figure
Nova Bahiafarma: uma análise das perspectivas para a entrada na produção farmacêutica
Considerada a proposta do atual Governo do Estado da Bahia – de implantação da Fundação Bahiafarma e de uma planta produtora de anticoncecionais orais genéricos –, o presente artigo, em caráter exploratório, tem por objetivo indicar, com base na tipologia de Porter, quais são as forças competitivas que podem atuar sobre um laboratório público entrante, fornecedor de contraceptivos para o SUS. Para tanto, e dada a existência de lacunas em parte das informações demandadas, o estudo foi realizado a partir do estabelecimento de um cenário de análise. Os resultados sugerem condições de entrada não favoráveis à planta da Bahiafarma, devido, especialmente, às implicações da Lei 8.666/93 e a certos aspectos do Projeto de Lei n° 17.709/08, que limita à atuação da futura fundação de abastecimento do SUS
Good Quantum Convolutional Error Correction Codes And Their Decoding Algorithm Exist
Quantum convolutional code was introduced recently as an alternative way to
protect vital quantum information. To complete the analysis of quantum
convolutional code, I report a way to decode certain quantum convolutional
codes based on the classical Viterbi decoding algorithm. This decoding
algorithm is optimal for a memoryless channel. I also report three simple
criteria to test if decoding errors in a quantum convolutional code will
terminate after a finite number of decoding steps whenever the Hilbert space
dimension of each quantum register is a prime power. Finally, I show that
certain quantum convolutional codes are in fact stabilizer codes. And hence,
these quantum stabilizer convolutional codes have fault-tolerant
implementations.Comment: Minor changes, to appear in PR
Conditional generation of N-photon entangled states of light
We propose a scheme for conditional generation of two-mode N-photon
path-entangled states of traveling light field. These states may find
applications in quantum optical lithography and they may be used to improve the
sensitivity of interferometric measurements. Our method requires only
single-photon sources, linear optics (beam splitters and phase shifters), and
photodetectors with single photon sensitivity.Comment: 4 pages, 2 figures, RevTeX
Direct sampling of exponential phase moments of smoothed Wigner functions
We investigate exponential phase moments of the s-parametrized
quasidistributions (smoothed Wigner functions). We show that the knowledge of
these moments as functions of s provides, together with photon-number
statistics, a complete description of the quantum state. We demonstrate that
the exponential phase moments can be directly sampled from the data recorded in
balanced homodyne detection and we present simple expressions for the sampling
kernels. The phase moments are Fourier coefficients of phase distributions
obtained from the quasidistributions via integration over the radial variable
in polar coordinates. We performed Monte Carlo simulations of the homodyne
detection and we demonstrate the feasibility of direct sampling of the moments
and subsequent reconstruction of the phase distribution.Comment: RevTeX, 8 pages, 6 figures, accepted Phys. Rev.
Interpretation for a positive P representation
We show that a "canonical" form of the positive P representation has a simple interpretation as the statistics of four detectors, two of which make redundant position measurements, while the other two simultaneously make redundant momentum measurements. This interpretation allows us to understand the additional degrees of freedom for the canonical positive P representation
Magnetic resonance imaging of femoral head development in roentgenographically normal patients
Magnetic resonance images (MRI) of 22 patients with roentgenographically normal hips were reviewed retrospectively and the findings categorized according to age. With increasing maturity, the MR intensity of the femoral heads on spin echo images increased, as marrow fat became a dominant tissue in the head. The femoral head pattern was relatively inhomogeneous, with a broad band of diminished intensity extending in a posteromedial to anterolateral direction, corresponding to the pattern of trabecular bone. The femoral capital epiphyses were visible in younger patients as structures of bright intensity which remained evident through early adulthood. The articular cartilage of the hip joint was noted as a distinctive “halo” around the femoral head. An understanding of the MR pattern of the normal hip will aid in the early recognition of pathologic conditions, such as osteonecrosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46778/1/256_2004_Article_BF00355555.pd
Experimental long-lived entanglement of two macroscopic objects
Entanglement is considered to be one of the most profound features of quantum
mechanics. An entangled state of a system consisting of two subsystems cannot
be described as a product of the quantum states of the two subsystems. In this
sense the entangled system is considered inseparable and nonlocal. It is
generally believed that entanglement manifests itself mostly in systems
consisting of a small number of microscopic particles. Here we demonstrate
experimentally the entanglement of two objects, each consisting of about 10^12
atoms. Entanglement is generated via interaction of the two objects - more
precisely, two gas samples of cesium atoms - with a pulse of light, which
performs a non-local Bell measurement on collective spins of the samples. The
entangled spin state can be maintained for 0.5 millisecond. Besides being of
fundamental interest, the robust, long-lived entanglement of material objects
demonstrated here is expected to be useful in quantum information processing,
including teleportation of quantum states of matter and quantum memory.Comment: Submitted to Nature, June 9, 2001, 11 pages, 3 figures. Contents
changed following referees' suggestion
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
- …