1,941 research outputs found

    Strong quantitative benchmarking of quantum optical devices

    Full text link
    Quantum communication devices, such as quantum repeaters, quantum memories, or quantum channels, are unavoidably exposed to imperfections. However, the presence of imperfections can be tolerated, as long as we can verify such devices retain their quantum advantages. Benchmarks based on witnessing entanglement have proven useful for verifying the true quantum nature of these devices. The next challenge is to characterize how strongly a device is within the quantum domain. We present a method, based on entanglement measures and rigorous state truncation, which allows us to characterize the degree of quantumness of optical devices. This method serves as a quantitative extension to a large class of previously-known quantum benchmarks, requiring no additional information beyond what is already used for the non-quantitative benchmarks.Comment: 11 pages, 7 figures. Comments are welcome. ver 2: Improved figures, no changes to main tex

    Directed percolation depinning models: Evolution equations

    Full text link
    We present the microscopic equation for the growing interface with quenched noise for the model first presented by Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)]. The evolution equation for the height, the mean height, and the roughness are reached in a simple way. The microscopic equation allows us to express these equations in two contributions: the contact and the local one. We compare this two contributions with the ones obtained for the Tang and Leschhorn model [Phys. Rev A 45, R8309 (1992)] by Braunstein et al. [Physica A 266, 308 (1999)]. Even when the microscopic mechanisms are quiet different in both model, the two contribution are qualitatively similar. An interesting result is that the diffusion contribution, in the Tang and Leschhorn model, and the contact one, in the Buldyrev model, leads to an increase of the roughness near the criticality.Comment: 10 pages and 4 figures. To be published in Phys. Rev.

    Tailoring teleportation to the quantum alphabet

    Get PDF
    We introduce a refinement of the standard continuous variable teleportation measurement and displacement strategies. This refinement makes use of prior knowledge about the target state and the partial information carried by the classical channel when entanglement is non-maximal. This gives an improvement in the output quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation experiments.Comment: 16 pages, 6 figures, RevTeX, made changes as recommended by referee, other minor textual corrections, resubmitted to Phys. Rev.

    Thermodynamics and the Measure of Entanglement

    Full text link
    We point out formal correspondences between thermodynamics and entanglement. By applying them to previous work, we show that entropy of entanglement is the unique measure of entanglement for pure states.Comment: 8 pages, RevTeX; edited for clarity, additional references, to appear as a Rapid Communication in Phys. Rev.

    Side-channel-free quantum key distribution

    Get PDF
    Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.Comment: Considering general quantum systems, we extended QKD to the presence of an untrusted relay, whose measurement creates secret correlations in remote stations (achievable rate lower-bounded by the coherent information). This key ingredient, i.e., the use of a measurement-based untrusted relay, has been called 'measurement-device independence' in another arXiv submission (arXiv:1109.1473

    Recovery of Interdependent Networks

    Get PDF
    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy of nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ\gamma, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1p1-p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γp\gamma-p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot avoid the system collapse

    Universal measurement apparatus controlled by quantum software

    Full text link
    We propose a quantum device that can approximate any projective measurement on a qubit. The desired measurement basis is selected by the quantum state of a "program register". The device is optimized with respect to maximal average fidelity (assuming uniform distribution of measurement bases). An interesting result is that if one uses two qubits in the same state as a program the average fidelity is higher than if he/she takes the second program qubit in the orthogonal state (with respect to the first one). The average information obtainable by the proposed measurements is also calculated and it is shown that it can get different values even if the average fidelity stays constant. Possible experimental realization of the simplest proposed device is presented.Comment: 4 pages, 2 figures, reference adde

    Alternative new notation for quantum information theory

    Full text link
    A new notation has been introduced for the quantum information theory. By this notation,some calculations became simple in quantum information theory such as quantum swapping, quantum teleportation.Comment: submitte

    Broadband teleportation

    Get PDF
    Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-variable teleportation protocol by Braunstein and Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states and apply them to the teleportation of broadband fields. We first consider as a set of input fields (from which an independent state preparer draws the inputs to be teleported) arbitrary pure Gaussian states with unknown coherent amplitude (squeezed or coherent states). This set of input states, further restricted to an alphabet of coherent states, was used in the experiment by Furusawa {\it et al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the (entanglement) source's squeezing spectrum for its ``quiet quadrature.'' The teleportation of one half of an entangled state (two-mode squeezed vacuum state), i.e., ``entanglement swapping,'' and its verification are optimized under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable entanglement swapping based on the single-mode scheme by van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review A (August 2000); major changes, in parts rewritte

    No Signalling and Quantum Key Distribution

    Full text link
    Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum mechanics were ever to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps use post-quantum physics to extract information from quantum communications without necessarily causing the quantum state disturbances on which existing security proofs rely. Here we describe a key distribution scheme provably secure against general attacks by a post-quantum eavesdropper who is limited only by the impossibility of superluminal signalling. The security of the scheme stems from violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final version; to appear in Phys. Rev. Let
    corecore