5 research outputs found

    Review Paper on Road Vehicle Vibration Simulation for Packaging Testing Purposes

    Get PDF
    Inefficient packaging constitutes a global problem that costs hundreds of billions of dollars, not to mention the additional environmental impacts. An insufficient level of packaging increases the occurrence of product damage, while an excessive level increases the packages' weight and volume, thereby increasing distribution cost. This problem is well known, and for many years, engineers have tried to optimize packaging to protect products from transport hazards for minimum cost. Road vehicle shocks and vibrations, which is one of the primary causes of damage, need to be accurately simulated to achieve optimized product protection. Over the past 50 years, road vehicle vibration physical simulation has progressed significantly from simple mechanical machines to sophisticated computer-driven shaking tables. There now exists a broad variety of different methods used for transport simulation. Each of them addresses different particularities of the road vehicle vibration. Because of the nature of the road and vehicles, different sources and processes are present in the vibration affecting freight. Those processes can be simplified as the vibration generated by the general road surface unevenness, road surface aberrations (cracks, bumps, potholes, etc.) and the vehicle drivetrain system (wheels, drivetrain, engine, etc.). A review of the transport vibration simulation methods is required to identify and critically evaluate the recent developments. This review begins with an overview of the standardized methods followed by the more advanced developments that focus on the different random processes of vehicle vibration by simulating non-Gaussian, non-stationary, transient and harmonic signals. As no ideal method exists yet, the review presented in this paper is a guide for further research and development on the topic

    Mindestanforderungskatalog Physik – ein Vorschlag

    Get PDF
    Die Studienanfänger in den technischen Studiengängen der Hochschulen für angewandte Wissenschaften haben nicht nur in Mathematik sondern auch in Physik sehr unterschiedliche Vorkenntnisse. Obwohl diese Fächer für das grundlegende Verständnis technischer Vorgänge von großer Bedeutung sind, kann die Ausbildung in diesen Bereichen angesichts der begrenzten dafür im Verlauf des Studiums zur Verfügung stehenden Zeitfenster nicht bei Null anfangen. Für Mathematik wurde daher von der Arbeitsgruppe cosh ein Mindestanforderungskatalog zusammengestellt und 2014 veröffentlicht. Er beschreibt Kenntnisse und Fertigkeiten, die Studienanfänger zur erfolgreichen Aufnahme eines WiMINT-Studiums (Wirtschaft, Mathematik, Informatik, Naturwissenschaft, Technik) an einer Hochschule benötigen. Inzwischen hat sich nun eine Arbeitsgruppe von Physikerinnen und Physikern an Hochschulen in Baden-Württemberg gebildet, deren Ziel es ist, einen analogen Mindestanforderungskatalog für den Bereich Physik zu erstellen. Hier wird der aktuell erreichte Stand der Arbeiten vorgestellt
    corecore