24,851 research outputs found
The 24-Cell and Calabi-Yau Threefolds with Hodge Numbers (1,1)
Calabi-Yau threefolds with h^11(X)=h^21(X)=1 are constructed as free
quotients of a hypersurface in the ambient toric variety defined by the
24-cell. Their fundamental groups are SL(2,3), a semidirect product of Z_3 and
Z_8, and Z_3 x Q_8.Comment: 22 pages, 3 figures, 3 table
Three Generations on the Quintic Quotient
A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair,
is constructed by compactification of the E_8 heterotic string. The base
manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the
quotient of a positive monad. The group action on the monad and its
bundle-valued cohomology is discussed in detail, including topological
restrictions on the existence of equivariant structures. This model and a
single Z_5 quotient are the complete list of three generation quotients of
positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde
The chemical equilibration volume: measuring the degree of thermalization
We address the issue of the degree of equilibrium achieved in a high energy
heavy-ion collision. Specifically, we explore the consequences of incomplete
strangeness chemical equilibrium. This is achieved over a volume V of the order
of the strangeness correlation length and is assumed to be smaller than the
freeze-out volume. Probability distributions of strange hadrons emanating from
the system are computed for varying sizes of V and simple experimental
observables based on these are proposed. Measurements of such observables may
be used to estimate V and as a result the degree of strangeness chemical
equilibration achieved. This sets a lower bound on the degree of kinetic
equilibrium. We also point out that a determination of two-body correlations or
second moments of the distributions are not sufficient for this estimation.Comment: 16 pages, 15 figures, revtex
Are Compact High-Velocity Clouds Extragalactic Objects?
Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the
Local Group model and would have HI volume densities of order 0.0003/cm^3.
Clouds with these volume densities and the observed neutral hydrogen column
densities will be largely ionized, even if exposed only to the extragalactic
ionizing radiation field. Here we examine the implications of this process for
models of CHVCs. We have modeled the ionization structure of spherical clouds
(with and without dark matter halos) for a large range of densities and sizes,
appropriate to CHVCs over the range of suggested distances, exposed to the
extragalactic ionizing photon flux. Constant-density cloud models in which the
CHVCs are at Local Group distances have total (ionized plus neutral) gas masses
roughly 20-30 times larger than the neutral gas masses, implying that the gas
mass alone of the observed population of CHVCs is about 40 billion solar
masses. With a realistic (10:1) dark matter to gas mass ratio, the total mass
in such CHVCs is a significant fraction of the dynamical mass of the Local
Group, and their line widths would exceed the observed FWHM. Models with dark
matter halos fare even more poorly; they must lie within approximately 200 kpc
of the Galaxy. We show that exponential neutral hydrogen column density
profiles are a natural consequence of an external source of ionizing photons,
and argue that these profiles cannot be used to derive model-independent
distances to the CHVCs. These results argue strongly that the CHVCs are not
cosmological objects, and are instead associated with the Galactic halo.Comment: 30 pages, 14 figures; to appear in The Astrophysical Journa
Strange Particle Production from SIS to LHC
>1A review of meson emission in heavy ion collisions at incident energies
from SIS up to collider energies is presented. A statistical model assuming
chemical equilibrium and local strangeness conservation (i.e. strangeness
conservation per collision) explains most of the observed features.
Emphasis is put onto the study of and emission at low incident
energies. In the framework of this statistical model it is shown that the
experimentally observed equality of and rates at
``threshold-corrected'' energies is due to a
crossing of two excitation functions. Furthermore, the independence of the
to ratio on the number of participating nucleons observed between
SIS and RHIC is consistent with this model.
It is demonstrated that the production at SIS energies occurs
predominantly via strangeness exchange and this channel is approaching chemical
equilibrium. The observed maximum in the excitation function is
also seen in the ratio of strange to non-strange particle production. The
appearance of this maximum around 30 GeV is due to the energy
dependence of the chemical freeze-out parameters and .Comment: Presented at the International Workshop "On the Physics of the
Quark-Gluon Plasma", Palaiseau, France, September 2001. 10 pages, 8 figure
Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis
The problem of detecting specific features of microscopic dynamics in the
macroscopic behavior of a many-degrees-of-freedom system is investigated by
analyzing the position and momentum time series of a heavy impurity embedded in
a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results
obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204
(2004)] suggest that the impurity does not contribute significantly to the
dynamics of the chain and can be considered as a probe for the dynamics of the
system to which the impurity is coupled. The () entropy, which measures
the amount of information generated by unit time at different scales of
time and of the observable, is numerically computed by methods of nonlinear
time-series analysis using the position and momentum signals of the heavy
impurity for various values of the energy density (energy per degree
of freedom) of the system and some values of the impurity mass . Results
obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.
Constraining the Kahler Moduli in the Heterotic Standard Model
Phenomenological implications of the volume of the Calabi-Yau threefolds on
the hidden and observable M-theory boundaries, together with slope stability of
their corresponding vector bundles, constrain the set of Kaehler moduli which
give rise to realistic compactifications of the strongly coupled heterotic
string. When vector bundles are constructed using extensions, we provide simple
rules to determine lower and upper bounds to the region of the Kaehler moduli
space where such compactifications can exist. We show how small these regions
can be, working out in full detail the case of the recently proposed Heterotic
Standard Model. More explicitely, we exhibit Kaehler classes in these regions
for which the visible vector bundle is stable. On the other hand, there is no
polarization for which the hidden bundle is stable.Comment: 28 pages, harvmac. Exposition improved, references and one figure
added, minor correction
Exclusive processes in position space and the pion distribution amplitude
We suggest to carry out lattice calculations of current correlators in
position space, sandwiched between the vacuum and a hadron state (e.g. pion),
in order to access hadronic light-cone distribution amplitudes (DAs). In this
way the renormalization problem for composite lattice operators is avoided
altogether, and the connection to the DA is done using perturbation theory in
the continuum. As an example, the correlation function of two electromagnetic
currents is calculated to the next-to-next-to-leading order accuracy in
perturbation theory and including the twist-4 corrections. We argue that this
strategy is fully competitive with direct lattice measurements of the moments
of the DA, defined as matrix elements of local operators, and offers new
insight in the space-time picture of hard exclusive reactions.Comment: 15 pages, 10 figure
Yukawa Couplings in Heterotic Standard Models
In this paper, we present a formalism for computing the Yukawa couplings in
heterotic standard models. This is accomplished by calculating the relevant
triple products of cohomology groups, leading to terms proportional to Q*H*u,
Q*Hbar*d, L*H*nu and L*Hbar*e in the low energy superpotential. These
interactions are subject to two very restrictive selection rules arising from
the geometry of the Calabi-Yau manifold. We apply our formalism to the
"minimal" heterotic standard model whose observable sector matter spectrum is
exactly that of the MSSM. The non-vanishing Yukawa interactions are explicitly
computed in this context. These interactions exhibit a texture rendering one
out of the three quark/lepton families naturally light.Comment: 21 pages, LaTe
- …