22,441 research outputs found

    Modelling of hydrological response to climate change in glacierized Central Asian catchments

    Get PDF
    The arid lowlands of Central Asia are highly dependent on the water supplied by the Tien Shan mountains. Snow and ice storage make large contributions to current runoff, particularly in summer. Two runoff models with different temporal resolutions, HBV-ETH and OEZ, were applied in three glaciated catchments of the Tien Shan mountains. Scenario runs were produced for a climate change caused by the doubling of atmospheric CO2 as predicted by the GISS global circulation model and assuming a 50% reduction of glaciation extent, as well as a complete loss of glaciation. Agreement of the results was best for runs based on 50% glaciation loss, where both models predict an increase in spring and summer runoff compared to current levels. Scenarios for complete loss of glaciation predict an increase in spring runoff levels, followed by lower runoff levels for July and August. Model predictions differ concerning the degree of reduction of late summer runoff. These scenarios are sensitive to model simulation of basin precipitation, as well as to reduction of glaciation extent

    Evaluation of seals for high-performance cryogenic turbomachines

    Get PDF
    An approach to computing flow and dynamic characteristics for seals or bearings is discussed. The local average velocity was strongly influenced by inlet and exit effects and fluid injection, which in turn drove zones of secondary flow. For the restricted three-dimensional model considered, the integral averaged results were in reasonable agreement with selected data. Unidirectional pressure measurements alone were insufficient to define such flow variations. However, for seal and bearing leakage correlations the principles of corresponding states were found to be useful. Also discussed are three phenomena encountered during testing of three eccentric nonrotating seal configurations for the Space Shuttle Main Engine (SSME) Program. Fluid injection, choking within a seal, and pressure profile crossover are related to postulated zones of secondary flow or separation and to direct stiffness

    Shuttle/TDRSS modelling and link simulation study

    Get PDF
    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal

    Scalar form factor of the nucleon and nucleon--scalar meson coupling constant in QCD

    Get PDF
    Scalar form factor of the nucleon is calculated in the framework of light cone QCD sum rules, using the most general form of the baryon current. Using the result on scalar form factor of the nucleon, the nucleon-scalar "sigma" and "a_0" meson coupling constants are estimated. Our results on these couplings are in good agreement with the prediction of the external field QCD sum rules method.Comment: 20 pages, 12 figures, LaTeX formatte

    Does more sequence data improve estimates of galliform phylogeny? Analyses of a rapid radiation using a complete data matrix

    Get PDF
    The resolution of rapid evolutionary radiations or “bushes” in the tree of life has been one of the most difficult and interesting problems in phylogenetics. The avian order Galliformes appears to have undergone several rapid radiations that have limited the resolution of prior studies and obscured the position of taxa important both agriculturally and as model systems (chicken, turkey, Japanese quail). Here we present analyses of a multi-locus data matrix comprising over 15,000 sites, primarily from nuclear introns but also including three mitochondrial regions, from 46 galliform taxa with all gene regions sampled for all taxa. The increased sampling of unlinked nuclear genes provided strong bootstrap support for all but a small number of relationships. Coalescent-based methods to combine individual gene trees and analyses of datasets that are independent of published data indicated that this well-supported topology is likely to reflect the galliform species tree. The inclusion or exclusion of mitochondrial data had a limited impact upon analyses upon analyses using either concatenated data or multispecies coalescent methods. Some of the key phylogenetic findings include support for a second major clade within the core phasianids that includes the chicken and Japanese quail and clarification of the phylogenetic relationships of turkey. Jackknifed datasets suggested that there is an advantage to sampling many independent regions across the genome rather than obtaining long sequences for a small number of loci, possibly reflecting the differences among gene trees that differ due to incomplete lineage sorting. Despite the novel insights we obtained using this increased sampling of gene regions, some nodes remain unresolved, likely due to periods of rapid diversification. Resolving these remaining groups will likely require sequencing a very large number of gene regions, but our analyses now appear to support a robust backbone for this order

    Modulational instability of spatially broadband nonlinear optical pulses in four-state atomic systems

    Full text link
    The modulational instability of broadband optical pulses in a four-state atomic system is investigated. In particular, starting from a recently derived generalized nonlinear Schr\"odinger equation, a wave-kinetic equation is derived. A comparison between coherent and random phase wave states is made. It is found that the spatial spectral broadening can contribute to the nonlinear stability of ultra-short optical pulses. In practical terms, this could be achieved by using random phase plate techniques.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    Get PDF
    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings
    • …
    corecore