28,795 research outputs found

    Equation of state of non-relativistic matter from automated perturbation theory and complex Langevin

    Get PDF
    We calculate the pressure and density of polarized non-relativistic systems of two-component fermions coupled via a contact interaction at finite temperature. For the unpolarized one-dimensional system with an attractive interaction, we perform a third-order lattice perturbation theory calculation and assess its convergence by comparing with hybrid Monte Carlo. In that regime, we also demonstrate agreement with real Langevin. For the repulsive unpolarized one-dimensional system, where there is a so-called complex phase problem, we present lattice perturbation theory as well as complex Langevin calculations. For our studies, we employ a Hubbard-Stratonovich transformation to decouple the interaction and automate the application of Wick's theorem for perturbative calculations, which generates the diagrammatic expansion at any order. We find excellent agreement between the results from our perturbative calculations and stochastic studies in the weakly interacting regime. In addition, we show predictions for the strong coupling regime as well as for the polarized one-dimensional system. Finally, we show a first estimate for the equation of state in three dimensions where we focus on the polarized unitary Fermi gas.Comment: 8 pages, 6 figures, proceedings of Lattice2017, Granada, Spai

    Creation of Entanglement by Interaction with a Common Heat Bath

    Full text link
    I show that entanglement between two qubits can be generated if the two qubits interact with a common heat bath in thermal equilibrium, but do not interact directly with each other. In most situations the entanglement is created for a very short time after the interaction with the heat bath is switched on, but depending on system, coupling, and heat bath, the entanglement may persist for arbitrarily long times. This mechanism sheds new light on the creation of entanglement. A particular example of two quantum dots in a closed cavity is discussed, where the heat bath is given by the blackbody radiation.Comment: 4 revtex pages, 1 eps figure; replaced with published version; short discussion on entanglement distillation adde

    Three Generations on the Quintic Quotient

    Get PDF
    A three-generation SU(5) GUT, that is 3x(10+5bar) and a single 5-5bar pair, is constructed by compactification of the E_8 heterotic string. The base manifold is the Z_5 x Z_5-quotient of the quintic, and the vector bundle is the quotient of a positive monad. The group action on the monad and its bundle-valued cohomology is discussed in detail, including topological restrictions on the existence of equivariant structures. This model and a single Z_5 quotient are the complete list of three generation quotients of positive monads on the quintic.Comment: 19 pages, LaTeX. v2: section on anomaly cancellation adde

    Thermal equation of state of polarized fermions in one dimension via complex chemical potentials

    Get PDF
    We present a nonperturbative computation of the equation of state of polarized, attractively interacting, nonrelativistic fermions in one spatial dimension at finite temperature. We show results for the density, spin magnetization, magnetic susceptibility, and Tan's contact. We compare with the second-order virial expansion, a next-to-leading-order lattice perturbation theory calculation, and interpret our results in terms of pairing correlations. Our lattice Monte Carlo calculations implement an imaginary chemical potential difference to avoid the sign problem. The thermodynamic results on the imaginary side are analytically continued to obtain results on the real axis. We focus on an intermediate- to strong-coupling regime, and cover a wide range of temperatures and spin imbalances.Comment: 14 pages, 19 figures; published versio

    Hadron-nucleus scattering in the local reggeon model with pomeron loops for realistic nuclei

    Full text link
    Contribution of simplest loops for hadron-nucleus scattering cross-sections is studied in the Local Reggeon Field Theory with a supercritical pomeron. It is shown that inside the nucleus the supercritical pomeron transforms into a subcritical one, so that perturbative treatment becomes possible. The pomeron intercept becomes complex, which leads to oscillations in the cross-sections.Comment: 13 pages, 6 figure

    Surmounting the sign problem in non-relativistic calculations: a case study with mass-imbalanced fermions

    Get PDF
    The calculation of the ground state and thermodynamics of mass-imbalanced Fermi systems is a challenging many-body problem. Even in one spatial dimension, analytic solutions are limited to special configurations and numerical progress with standard Monte Carlo approaches is hindered by the sign problem. The focus of the present work is on the further development of methods to study imbalanced systems in a fully non-perturbative fashion. We report our calculations of the ground-state energy of mass-imbalanced fermions using two different approaches which are also very popular in the context of the theory of the strong interaction (Quantum Chromodynamics, QCD): (a) the hybrid Monte Carlo algorithm with imaginary mass imbalance, followed by an analytic continuation to the real axis; and (b) the Complex Langevin algorithm. We cover a range of on-site interaction strengths that includes strongly attractive as well as strongly repulsive cases which we verify with non-perturbative renormalization group methods and perturbation theory. Our findings indicate that, for strong repulsive couplings, the energy starts to flatten out, implying interesting consequences for short-range and high-frequency correlation functions. Overall, our results clearly indicate that the Complex Langevin approach is very versatile and works very well for imbalanced Fermi gases with both attractive and repulsive interactions.Comment: 11 pages, 5 figure

    Faraday-rotation fluctuation spectroscopy with static and oscillating magnetic fields

    Full text link
    By Faraday-rotation fluctuation spectroscopy one measures the spin noise via Faraday-induced fluctuations of the polarization plane of a laser transmitting the sample. In the fist part of this paper, we present a theoretical model of recent experiments on alkali gas vapors and semiconductors, done in the presence of a {\em static} magnetic field. In a static field, the spin noise shows a resonance line, revealing the Larmor frequency and the spin coherence time T2T_2 of the electrons. Second, we discuss the possibility to use an {\em oscillating} magnetic field in the Faraday setup. With an oscillating field applied, one can observe multi-photon absorption processes in the spin noise. Furthermore an oscillating field could also help to avoid line broadening due to structural or chemical inhomogeneities in the sample, and thereby increase the precision of the spin-coherence time measurement.Comment: 5 pages, 7 figure

    Documentation of the analysis of the benefits and costs of aeronautical research and technology models, volume 1

    Get PDF
    The analysis of the benefits and costs of aeronautical research and technology (ABC-ART) models are documented. These models were developed by NASA for use in analyzing the economic feasibility of applying advanced aeronautical technology to future civil aircraft. The methodology is composed of three major modules: fleet accounting module, airframe manufacturing module, and air carrier module. The fleet accounting module is used to estimate the number of new aircraft required as a function of time to meet demand. This estimation is based primarily upon the expected retirement age of existing aircraft and the expected change in revenue passenger miles demanded. Fuel consumption estimates are also generated by this module. The airframe manufacturer module is used to analyze the feasibility of the manufacturing the new aircraft demanded. The module includes logic for production scheduling and estimating manufacturing costs. For a series of aircraft selling prices, a cash flow analysis is performed and a rate of return on investment is calculated. The air carrier module provides a tool for analyzing the financial feasibility of an airline purchasing and operating the new aircraft. This module includes a methodology for computing the air carrier direct and indirect operating costs, performing a cash flow analysis, and estimating the internal rate of return on investment for a set of aircraft purchase prices
    corecore