453 research outputs found

    Beam Loss Monitors for Heavy Ion Operation

    Get PDF
    The performance of the LHC as a heavy-ion collider is expected to be limited by a variety of beam loss mechanisms that are non-existent, or substantially different, in the case of protons. Among these are ultra-peripheral interactions of the colliding beams and the collimation inefficiency. Loss patterns are different and require additional installations of beam loss monitors. Further, the relation between energy deposition in superconducting magnet coils and the loss monitor signals has to be reassessed for heavy ions in order to determine the thresholds for dumping beams

    Monitoring heavy-ion beam losses in the LHC

    Get PDF
    The LHC beam loss monitor (BLM) system, primarily designed for proton operation, will survey particle losses and dump the beam if the loss rate exceeds a threshold expected to induce magnet quenches. Simulations of beam losses in the full magnet geometry allow us to compare the response of the BLMs to ion and proton losses and establish preliminary loss thresholds for quenches. Further simulations of beam losses caused by collimation and electromagnetic interactions peculiar to heavy ion collisions determine the positions of extra BLMs needed for ion operation in the LHC

    Measurements of heavy ion beam losses from collimation

    Get PDF
    The collimation efficiency for Pb ion beams in the LHC is predicted to be lower than requirements. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation.Comment: 12 pages, 20 figure

    Accurate Coordinates and 2MASS Cross-IDs for (Almost) All Gliese Catalog Stars

    Full text link
    We provide precise J2000, epoch 2000 coordinates and cross-identifications to sources in the 2MASS point source catalog for nearly all stars in the Gliese, Gliese and Jahreiss, and Woolley catalogs of nearby stars. The only Gliese objects where we were not successful are two Gliese sources that are actually QSOs, two proposed companions to brighter stars which we believe do not exist, four stars included in one of the catalogs but identified there as only optical companions, one probable plate flaw, and two stars which simply remain un-recovered. For the 4251 recovered stars, 2693 have coordinates based on Hipparcos positions, 1549 have coordinates based on 2MASS data, and 9 have positions from other astrometric sources. All positions have been calculated at epoch 2000 using proper motions from the literature, which are also given here.Comment: accepted to PASP, Full version of Table 1 available electronicall

    Ion and proton loss paterns at the SPS and LHC

    Get PDF
    The collimation system of the LHC, primarily designed for proton operation, must function safely also with 208Pb82+ions. However, the particle-matter interaction in a collimator is different for heavy ions and protons. Heavy ions are subject to nuclear fragmentation, which creates a spectrum of secondary particles exiting the collimators with a Z/A ratio different from the nominal beam. These particles could be lost in a superconducting magnet and the induced heating might cause a quench. The program ICOSIM has previously been used to simulate these losses in the LHC. In this article, we present a benchmark of ICOSIM, using measured proton and ion loss maps in the SPS, and find a good qualitative agreement. We also make a quantitative comparison where the showers of the lost particles are simulated with the FLUKA code in the full magnet geometry. Here a discrepancy of a factor 3.8 is found. Estimation of expected uncertainties continues

    Associations of maternal urinary arsenic concentrations during pregnancy with childhood cognitive abilities: The HOME study

    Get PDF
    Arsenic exposure during pregnancy may increase the risk for intellectual deficits in children, but limited data exist from prospective epidemiologic studies, particularly at low arsenic exposure levels. We investigated the association between prenatal maternal urinary arsenic concentrations and childhood cognitive abilities in the Health Outcomes and Measures of the Environment (HOME) Study. We used anion exchange chromatography coupled with inductively coupled plasma mass spectrometry detection to measure arsenic species content in pregnant women’s urine. The summation of inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) refers to ΣAs. We assessed children’s cognitive function (n = 260) longitudinally at 1-, 2-, and 3-years using Bayley Scales of Infant and Toddler Development, at 5 years using Wechsler Preschool and Primary Scale of Intelligence, and at 8 years using Wechsler Intelligence Scale for Children. We observed a modest decrease in mental development index and full-scale intelligence quotient at ages 3 and 5 years with each doubling of ΣAs with estimated score (ß) differences and 95% confidence interval (CI) of -1.8 from - 4.1 to 0.5 and - 2.5 from - 5.1 to 0.0, respectively. This trend was stronger and reached statistical significance among children whose mothers had lower iAs methylation capacity and low urinary arsenobetaine concentrations. Our findings suggest that arsenic exposure levels relevant to the general US population may affect children’s cognitive abilities

    Association of Pyrethroid Pesticide Exposure With Attention-Deficit/Hyperactivity Disorder in a Nationally Representative Sample of U.S. Children

    Get PDF
    Background Pyrethroid pesticides cause abnormalities in the dopamine system and produce an ADHD phenotype in animal models, with effects accentuated in males versus females. However, data regarding behavioral effects of pyrethroid exposure in children is limited. We examined the association between pyrethroid pesticide exposure and ADHD in a nationally representative sample of US children, and tested whether this association differs by sex. Methods Data are from 8–15 year old participants (N = 687) in the 2001–2002 National Health and Nutrition Examination Survey. Exposure was assessed using concurrent urinary levels of the pyrethroid metabolite 3-phenoxybenzoic acid (3-PBA). ADHD was defined by either meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria on the Diagnostic Interview Schedule for Children (DISC) or caregiver report of a prior diagnosis. ADHD symptom counts were determined via the DISC. Multivariable logistic regression examined the link between pyrethroid exposure and ADHD, and poisson regression investigated the link between exposure and ADHD symptom counts. Results Children with urinary 3-PBA above the limit of detection (LOD) were twice as likely to have ADHD compared with those below the LOD (adjusted odds ratio [aOR] 2.42; 95 % confidence interval [CI] 1.06, 5.57). Hyperactive-impulsive symptoms increased by 50 % for every 10-fold increase in 3-PBA levels (adjusted count ratio 1.50; 95 % CI 1.03, 2.19); effects on inattention were not significant. We observed possible sex-specific effects: pyrethroid biomarkers were associated with increased odds of an ADHD diagnosis and number of ADHD symptoms for boys but not girls. Conclusions We found an association between increasing pyrethroid pesticide exposure and ADHD which may be stronger for hyperactive-impulsive symptoms compared to inattention and in boys compared to girls. Given the growing use of pyrethroid pesticides, these results may be of considerable public health import

    Constraining R-parity violating couplings from B --> PP decays using QCD improved factorization method

    Get PDF
    We investigate the role of R-parity violating interaction in the non-leptonic decays of B mesons into two light mesons B --> PP. The decay amplitudes are calculated using the QCD improved factorization method. Using the combined data on B decays from BaBar, Belle and CLEO, we obtain strong constraints on the various products of R-parity violating couplings. Many of these new constraints are stronger than the existing bounds.Comment: 19 pages including two eps figure
    • …
    corecore