1,777 research outputs found
Absorption spectrum of (H2O)-O-18 in the range 12 400-14 520 cm(-1)
Fourier transform spectra recorded using (a) natural abundance water vapor, (b) (H2O)-O-18-enriched water vapor, and (c) (H2O)-O-17-enriched water vapor are analyzed. The ratio of intensities in three spectra is used to identify 927 lines due to absorption by (H2O)-O-18. Intensities and self-broadening parameters are derived for these lines. Using theoretical linelists, comparisons with previously assigned (H2O)-O-16 spectra, and automatic searches for combination differences, 747 lines are assigned. These lines belong to 14 vibrational states in the 3nu + delta and 4nu polyads. Newly determined (H2O)-O-18 vibrational band origins include 4nu(1) at 13 793.09 cm(-1), 3nu(1) + nu(3) at 13 795.40 cm(-1), 2nu(1) + 2nu(3) at 14 188.82 cm(-1), nu(1) + 3nu(3) at 14 276.34 cm(-1), and 2nu(2) + 2nu(2) + nu(3) at 13 612.71 cm(-1). These results are compared with data in HITRAN. (C) 2002 Elsevier Science (USA)
Estimating the number of change-points in a two-dimensional segmentation model without penalization
In computational biology, numerous recent studies have been dedicated to the
analysis of the chromatin structure within the cell by two-dimensional
segmentation methods. Motivated by this application, we consider the problem of
retrieving the diagonal blocks in a matrix of observations. The theoretical
properties of the least-squares estimators of both the boundaries and the
number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More
precisely, the contribution of the paper is to establish the consistency of
these estimators. A surprising consequence of our results is that, contrary to
the onedimensional case, a penalty is not needed for retrieving the true number
of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure
Lifetimes, transition probabilities, and level energies in Fe I
We use time-resolved laser-induced fluorescence to measure the lifetime of 186 Fe levels with energies between 25 900 and 60 758 cm . Measured emission branching fractions for these levels yield transition probabilities for 1174 transitions in the range 225-2666 nm. We find another 640 Fe transition probabilities by interpolating level populations in the inductively coupled plasma spectral source. We demonstrate the reliability of the interpolation method by comparing our transition probabilities with absorption oscillator strengths measured by the Oxford group [Blackwell et al., Mon. Not. R. Astron. Soc. 201, 595-602 (1982)]. We derive precise Fe level energies to support the automated method that is used to identify transitions in our spectra
Impact of Tumor-Derived CCL2 on Macrophage Effector Function
Monocyte chemoattractant protein-1 (MCP-1, CCL2) is produced by many different types of cells. In the current investigation, the effect of tumor-derived CCL2 on macrophages was evaluated to determine the extent to which this chemokine influenced the innate immune response to cancer. To do this, we used the 4T1 murine mammary carcinoma cell line that constitutively expresses CCL2 and generated 4T1 expressing an antisense CCL2 transcript. The antisense-CCL2-expressing 4T1 produced no detectable CCL2. Macrophages from female BALB/c mice were exposed to supernatants from these tumor cells. The results showed that tumor-derived CCL2 was capable of modulating cytokine gene expression but not protein production in resting, activated, and tumor-associated macrophages. In addition, tumor-derived CCL2 did not affect phagocytic activity, nitric oxide production, or cytolytic activity of the macrophages. Overall, these data suggest that tumor-derived CCL2 does not directly influence macrophage-mediated antitumor activity
Gaussian mixture model-based contrast enhancement
In this study, a method for enhancing low-contrast images is proposed. This method, called Gaussian mixture model-based contrast enhancement (GMMCE), brings into play the Gaussian mixture modelling of histograms to model the content of the images. On the basis of the fact that each homogeneous area in natural images has a Gaussian-shaped histogram, it decomposes the narrow histogram of low-contrast images into a set of scaled and shifted Gaussians. The individual histograms are then stretched by increasing their variance parameters, and are diffused on the entire histogram by scattering their mean parameters, to build a broad version of the histogram. The number of Gaussians as well as their parameters are optimised to set up a Gaussian mixture modelling with lowest approximation error and highest similarity to the original histogram. Compared with the existing histogram-based methods, the experimental results show that the quality of GMMCE enhanced pictures are mostly consistent and outperform other benchmark methods. Additionally, the computational complexity analysis shows that GMMCE is a low-complexity method
Fourier transform absorption spectra of (H2O)-O-18 and (H2O)-O-17 in the 3v plus delta and 4v polyad region
Fourier transform absorption spectra of (H2O)-O-18-enriched and (H2O)-O-17-enriched water vapor in the 3v + delta and 4v polyad region have been analyzed. With the aid of theoretically calculated linelists, we have assigned 1014 lines attributed to (H2O)-O-18 and 836 lines of 855 attributed to (H2O)-O-17. Seven new band origins are found for (H2O)-O-17 and one for (H2O)-O-18. (c) 2005 Elsevier Inc. All rights reserved
Evaluation of antioxidant radical scavenging activity by means of electrogenerated hydroxyl radicals
Hydroxyl radical is one of the most reactive radicals. The generation of HO• represents an important task in different areas, such as organic synthesis [1], oxidative stress studies [2] and in the detoxification of effluents [3]. The generation of hydroxyl radicals based on metal catalyzed decomposition of hydrogen peroxide, by Fenton or Fenton-like reactions, is the most spread method. In the context of the mineralization of organic compounds from aqueous media, several papers report the electrochemical generation of hydroxyl radical by the oxidation of water. Boron doped diamond electrodes (BDD) have been successfully used as anode material for the production of hydroxyl radicals. The absence of chemical precursors is a great advantage of the electrochemical generation of HO• towards the Fenton-type reactions. The possible interference of the metal ions in antioxidant activity assays is also an important issue. In this context we tested the use of electrochemical generated HO• for the evaluation of antioxidant scavenging activity. The antioxidant scavenging activity is evaluated by means of inhibition of the HO• mediated oxidation of a non-electroactive species (sodium benzoate). The experimental conditions for the antioxidant scavenging activity assay were optimized namely, the anode material (Pt and BDD), current density and medium composition. The oxidation reactions were monitored by fluorescence, cyclic voltammetry and HPLC (UV detection).Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/64189/200
Accurate Ritz wavelengths of parity-forbidden [Fe II], [Ti II] and [Cr II] infrared lines of astrophysical interest
With new astronomical infrared spectrographs the demands of accurate atomic
data in the infrared have increased. In this region there is a large amount of
parity-forbidden lines, which are of importance in diagnostics of low-density
astrophysical plasmas. We present improved, experimentally determined, energy
levels for the lowest even LS terms of Fe II, Ti II and Cr II, along with
accurate Ritz wavelengths for parity-forbidden transitions between and within
these terms. Spectra of Fe II, Ti II and Cr II have been produced in a hollow
cathode discharge lamp and acquired using high-resolution Fourier Transform
(FT) spectrometry. The energy levels have been determined by using observed
allowed ultraviolet transitions connecting the even terms with upper odd terms.
Ritz wavelengths of parity-forbidden lines have then been determined. Energy
levels of the four lowest Fe II terms (aD, aF, aD and
aP) have been determined, resulting in 97 different parity-forbidden
transitions with wavelengths between 0.74 and 87 micron. For Ti II the energy
levels of the two lowest terms (aF and bF) have been determined,
resulting in 24 different parity-forbidden transitions with wavelengths between
8.9 and 130 micron. Also for Cr II the energy levels of the two lowest terms
(aS and aD) have been determined, in this case resulting in 12
different parity-forbidden transitions with wavelengths between 0.80 and 140
micron.Comment: Accepted for publication in A&A, 13 pages, 6 figures, 9 table
- …