48 research outputs found

    Establishing New Sites of Polarization by Microtubules

    Get PDF
    SummaryBackgroundMicrotubules (MTs) participate in the spatial regulation of actin-based processes such as cytokinesis and cell polarization [1]. The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that exhibits polarized cell growth at cell tips. MT plus ends contact and shrink from the cell tips and contribute to polarity regulation.ResultsHere, we investigate the effects of changing cell shape on MTs and cell-polarization machinery. We physically bend fission yeast cells by forcing them into microfabricated femtoliter chambers. In these bent cells, MTs maintain a straight axis and contact and shrink from cortical sites at the sides of cells. At these ectopic sites, polarity factors such as bud6p, for3p (formin), and cdc42p are recruited and assemble actin cables in a MT-dependent manner. MT contact at the cortex induces the appearance of a bud6p dot within seconds. The accumulation of polarity factors leads to cell growth at these sites, when the MT-associated polarity factor tea1p is absent. This process is dependent on MTs, mal3p (EB1), moe1p (an EB1-binding protein), and for3p but, surprisingly, is independent of the tea1p-tea4p pathway.ConclusionsThese studies provide a direct demonstration for how MTs induce actin assembly at specific locations on the cell cortex and begin to identify a new pathway involved in this process. MT interactions with the cortex may be regulated by cortical-attachment sites. These findings highlight the crosstalk between cell shape, polarity mechanisms, and MTs responsible for cell morphogenesis

    Prediction of acute myeloid leukaemia risk in healthy individuals

    Get PDF
    The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure(1). The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion(2,3). However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)(4-8). Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention

    Designing circulating tumor DNA-based interventional clinical trials in oncology

    No full text
    Editorial summary Circulating tumor (ct) DNA is a powerful tool that can be used to track cancer beyond a single snapshot in space and time. It has potential applications in detecting minimal residual disease and predicting relapse, in selecting patients for tailored treatments, and in revealing mechanisms of response or resistance. Here, we discuss the incorporation of ctDNA into clinical trials

    Liquid biopsies to predict CDK4/6 inhibitor efficacy and resistance in breast cancer

    No full text
    Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors combined with endocrine therapy have transformed the treatment of estrogen receptor-positive (ER+) and human epidermal growth factor receptor 2 negative (HER2-) metastatic breast cancer. However, some patients do not respond to this treatment, and patients inevitably develop resistance, such that novel biomarkers are needed to predict primary resistance, monitor treatment response for acquired resistance, and personalize treatment strategies. Circumventing the spatial and temporal limitations of tissue biopsy, newly developed liquid biopsy approaches have the potential to uncover biomarkers that can predict CDK4/6 inhibitor efficacy and resistance in breast cancer patients through a simple blood test. Studies on circulating tumor DNA (ctDNA)-based liquid biopsy biomarkers of CDK4/6 inhibitor resistance have focused primarily on genomic alterations and have failed thus far to identify clear and clinically validated predictive biomarkers, but emerging epigenetic ctDNA methodologies hold promise for further discovery. The present review outlines recent advances and future directions in ctDNA-based biomarkers of CDK4/6 inhibitor treatment response

    Isolation of salivary cell-free DNA for cancer detection.

    No full text
    Saliva is an emerging source of disease biomarkers, particularly for cancers of the head and neck. Although analysis of cell-free DNA (cfDNA) in saliva holds promise as a liquid biopsy for cancer detection, currently there are no standardized methodologies for the collection and isolation of saliva for the purposes of studying DNA. Here, we evaluated various saliva collection receptacles and DNA purification techniques, comparing DNA quantity, fragment size, source, and stability. Then, using our optimized techniques, we tested the ability to detect human papillomavirus (HPV) DNA- a bona fide cancer biomarker in a subset of head and neck cancers- from patient saliva samples. For saliva collection, we found that the Oragene OG-600 receptacle yielded the highest concentration of total salivary DNA as well as short fragments <300 bp corresponding to mononucleosomal cell-free DNA. Moreover, these short fragments were stabilized beyond 48 hours after collection in contrast to other saliva collection receptacles. For DNA purification from saliva, the QIAamp Circulating Nucleic Acid kit yielded the highest concentration of mononucleosome-sized DNA fragments. Freeze-thaw of saliva samples did not affect DNA yield or fragment size distribution. Salivary DNA isolated from the OG-600 receptacle was found to be composed of both single and double-stranded DNA, including mitochondrial and microbial sources. While levels of nuclear DNA were consistent over time, levels of mitochondrial and microbial DNA were more variable and increased 48 hours after collection. Finally, we found that HPV DNA was stable in OG-600 receptacles, was reliably detected within the saliva of patients with HPV-positive head and neck cancer, and was abundant among mononucleosome-sized cell-free DNA fragments. Our studies have defined optimal techniques for isolating DNA from saliva that will contribute to future applications in liquid biopsy-based cancer detection
    corecore