13 research outputs found

    Copro-diagnosis of Echinococcus granulosus infection in dogs by amplification of a newly identified repeated DNA sequence.

    No full text
    International audienceDiagnosis of Echinococcus granulosus infection in dogs by detecting adult worms recovered post mortem or purged from the intestines after treatment with arecoline is not suitable for mass screening. Large-scale diagnosis by detection of copro-antigens is useful but only with relatively high intensity infections, and only by genus. To provide a more sensitive and specific diagnosis, a polymerase chain reaction (PCR) assay was developed, that amplified a target repeated sequence (EgG1 Hae III) newly identified in the genome of the common sheep strain of E. granulosus. This repeated sequence consists of approximately 6,900 copies, arranged in tandem, in groups of 2-6 repeats. The corresponding primers used in the PCR easily detected a single egg with no cross-amplification of DNA from closely related cestodes, including E. multilocularis and Taenia spp. Fecal samples from naturally infected dogs, with 2-10,000 E. granulosus worms at necropsy, were all PCR positive, while E. multilocularis or Taenia spp. positive controls as well as non-endemic controls were all PCR negative. This copro-PCR assay was demonstrated to be 100% specific and also detected all necropsy-positive E. granulosus-infected dogs. It is suggested that this copro-PCR assay has the potential for pre-mortem diagnosis of E. granulosus infection even in areas where E. granulosus and E. multilocularis are co-endemic

    Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners

    No full text
    Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners
    corecore