644 research outputs found

    X-Ray Diffraction and Scanning Electron Microscopy Analyses of a Gallium-Based Dental Restorative Alloy

    Get PDF
    Specimens of a gallium-based dental alloy were prepared with different condensation techniques, with and without the removal of a surface layer, and after aging for 2 hours at 50°, 100° and 150°C. X-ray diffraction at times ranging from 10 minutes to 1 day showed the development of the four matrix phases (ß-Sn, CuGa2, Ga28Ag72, and In4Ag9) during the setting reaction. Scanning electron microscope (SEM) examination of specimens loaded to failure revealed brittle fracture, with greater porosity for hand-condensed specimens, and provided insight into crack propagation processes. Aging increased the amount of ß-Sn in freshly prepared specimens, and removal of the Ga-rich surface layer after condensation decreased the amount of this phase. For specimens stored for 5 weeks at room temperature, aging substantially increased the amount of the CuGa2 phase but caused only moderate increases in the amount of ß-Sn

    Booming sand dunes: field measurements

    Get PDF
    “Booming dunes” are large desert sand dunes that make a loud droning or humming noise during an avalanching of sand. The phenomenon has been observed for censturies, yet it remains largely unexplained. This note demonstrates that the booming frequency does not scale with the size of the particle or with the shearing speed of the avalanching sand. Instead, the dune may act as a waveguide with a fundamental frequency that depends on the sound speed within the dune and the depth of the loose dry sand layer

    Symmetries and Interactions from Lattice QCD

    Full text link
    Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, gAg_A, whose precise value as predicted by the SM could help point to new physics contributions to the so-called "neutron lifetime puzzle", and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches.Comment: Plenary talk presented CIPANP2018. 11 pages, 3 figure

    Variable Curvature Slab Molecular Dynamics as a Method to Determine Surface Stress

    Full text link
    A thin plate or slab, prepared so that opposite faces have different surface stresses, will bend as a result of the stress difference. We have developed a classical molecular dynamics (MD) formulation where (similar in spirit to constant-pressure MD) the curvature of the slab enters as an additional dynamical degree of freedom. The equations of motion of the atoms have been modified according to a variable metric, and an additional equation of motion for the curvature is introduced. We demonstrate the method to Au surfaces, both clean and covered with Pb adsorbates, using many-body glue potentials. Applications to stepped surfaces, deconstruction and other surface phenomena are under study.Comment: 16 pages, 8 figures, REVTeX, submitted to Physical Review

    Mars Sample Return: The Value of Depth Profiles

    Get PDF
    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars

    Cosmogenic ^(10)Be and ^(36)Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    Get PDF
    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ∼297 ± 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic ^(10)Be and ^(36)Cl geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/−20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on ^(36)Cl depth profiles is 63 ± 8 ka. Combining the offset measurement with the cosmogenic ^(10)Be date yields a geologic fault slip rate of 4.2 +1.9/−1.1 mm yr^(−1), whereas the ^(36)Cl data indicate 4.7 +0.9/−0.6 mm yr^(−1) of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ∼8.5 to 10 mm yr^(−1). This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant

    Eph receptors in breast cancer: roles in tumor promotion and tumor suppression

    Get PDF
    Eph receptor tyrosine kinase signaling regulates cancer initiation and metastatic progression through multiple mechanisms. Studies of tumor-cell-autonomous effects of Eph receptors demonstrate their dual roles in tumor suppression and tumor promotion. In addition, Eph molecules function in the tumor microenvironment, such as in vascular endothelial cells, influencing the ability of these molecules to promote carcinoma progression and metastasis. The complex nature of Eph receptor signaling and crosstalk with other receptor tyrosine kinases presents a unique challenge and an opportunity to develop therapeutic intervention strategies for targeting breast cancer

    The stochastic Feynman-Hellmann method

    Get PDF
    The Feynman-Hellmann method, as implemented by Bouchard et al. [1612.06963], was recently employed successfully to determine the nucleon axial charge. A limitation of the method was the restriction to a single operator and a single momentum during the computation of each "Feynman-Hellmann" propagator. By using stochastic techniques to estimate the all-to-all propagator, we relax this constraint and demonstrate the successful implementation of this new method. We show reproduction of the axial charge on a test ensemble and non-zero momentum transfer points of the axial and vector form factors

    Psychosocial working conditions and the utilization of health care services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is considerable theoretical and empirical evidence on how job stress affects physical and mental health, few studies have examined the association between job related stress and health care utilization. Using data from the Canadian National Population Health Survey from 2000 to 2008, this paper examines the association between stressful working conditions, as measured by the job strain model, and the utilization of health care services.</p> <p>Methods</p> <p>A zero inflated negative binomial regression is used to examine the excess health care utilization due to job strain. Separate regressions are estimated for both males and females since studies have shown gender differences in health care utilization.</p> <p>Results</p> <p>Estimates for the whole population show that high or medium job strain has a positive and statistically significant association with the number of visits to both a general practitioner (GP) and a specialist (SP). On average, the number of GP visits is up to 26% more (IRR = 1.26, 95% CI = 1.19-1.31) for individuals with high strain jobs compared to those in the low job strain category. Similarly, SP visits are up to 27% more (IRR = 1.27, 95% CI = 1.14-142) for the high strain category. Results are quantitatively similar for males and females, save for medium strain. In general, findings are robust to the inclusion of workplace social support, health status, provincial and occupational-fixed effects.</p> <p>Conclusion</p> <p>Job strain may be positively associated with the utilization of health care services. This suggests that improving psychosocial working conditions and educating workers on stress-coping mechanisms could be beneficial for the physical and mental health of workers.</p
    corecore