37 research outputs found
Assessment of Renal Function by the Stable Oxygen and Hydrogen Isotopes in Human Blood Plasma
Water (H2O) is the most abundant and important molecule of life. Natural water contains small amount of heavy isotopes. Previously, few animal model studies have shown that the isotopic composition of body water could play important roles in physiology and pathophysiology. Here we study the stable isotopic ratios of hydrogen (δ2H) and oxygen (δ18O) in human blood plasma. The stable isotopic ratio is defined and determined by δsample = [(Rsample/RSTD)−1] * 1000, where R is the molar ratio of rare to abundant, for example, 18O/16O. We observe that the δ2H and the δ18O in human blood plasma are associated with the human renal functions. The water isotope ratios of the δ2H and δ18O in human blood plasma of the control subjects are comparable to those of the diabetes subjects (with healthy kidney), but are statistically higher than those of the end stage renal disease subjects (p<0.001 for both ANOVA and Student's t-test). In addition, our data indicate the existence of the biological homeostasis of water isotopes in all subjects, except the end stage renal disease subjects under the haemodialysis treatment. Furthermore, the unexpected water contents (δ2H and δ18O) in blood plasma of body water may shed light on a novel assessment of renal functions
Differences between hospitals in attainment of parathyroid hormone treatment targets in chronic kidney disease do not reflect differences in quality of care
Contains fulltext :
110897.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Transparency in quality of care (QoC) is stimulated and hospitals are compared and judged on the basis of indicators of performance on specific treatment targets. In patients with chronic kidney disease, QoC differed significantly between hospitals. In this analysis we explored additional parameters to explain differences between centers in attainment of parathyroid hormone (PTH) treatment targets. METHODS: Using MASTERPLAN baseline data, we selected one of the worst (center A) and one of the best (center B) performing hospitals. Differences between the two centers were analyzed from the year prior to start of the MASTERPLAN study until the baseline evaluation. Determinants of PTH were assessed. RESULTS: 101 patients from center A (median PTH 9.9 pmol/l, in 67 patients exceeding recommended levels) and 100 patients from center B (median PTH 6.5 pmol/l, in 34 patients exceeding recommended levels), were included. Analysis of clinical practice did not reveal differences in PTH management between the centers. Notably, hyperparathyroidism resulted in a change in therapy in less than 25% of patients. In multivariate analysis kidney transplant status, MDRD-4, and treatment center were independent predictors of PTH. However, when MDRD-6 (which accounts for serum urea and albumin) was used instead of MDRD-4, the center effect was reduced. Moreover, after calibration of the serum creatinine assays treatment center no longer influenced PTH. CONCLUSIONS: We show that differences in PTH control between centers are not explained by differences in treatment, but depend on incomparable patient populations and laboratory techniques. Therefore, results of hospital performance comparisons should be interpreted with great caution