235 research outputs found

    Colonic ulcerations may predict steroid-refractory course in patients with ipilimumab-mediated enterocolitis

    Get PDF
    To investigate management of patients who develop ipilimumab-mediated enterocolitis, including association of endoscopic findings with steroid-refractory symptoms and utility of infliximab as second-line therapy

    The Role of Dwarf Galaxies in Building Large Stellar Halos

    Get PDF
    The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances in spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.Comment: Astro2010 Decadal Survey White Paper, 8 page

    Which comforting messages really work best? A different perspective on Lemieux and Tighe’s “receiver perspective”

    Get PDF
    Abstract OnlyThis article responds critically to a recent article by Lemieux and Tighe (Communication Research Reports, 21, 144–153, 2004) in which the authors conclude that recipients of comforting efforts prefer messages that exhibit a moderate rather than high level of person centeredness. It is argued that an erroneous assumption made by Lemieux and Tighe about the status of “receiver perspective” research on the comforting process led to faulty interpretations of the data and unwarranted conclusions about recipient preferences regarding comforting messages. Alternative interpretations of Lemieux and Tighe's data are presented; these are guided by the extensive previous research that has assessed evaluations and outcomes of comforting messages

    New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign

    Full text link
    Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicates reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z~6 the population of star-forming galaxies at redshifts z~7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M_UV\sim -13 or fainter. Moreover, low levels of star formation extending to redshifts z~15-25, as suggested by the normal UV colors of z\simeq7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z\simeq10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations.Comment: Version accepted by ApJ (originally submitted Jan 5, 2013). The UDF12 website can be found at http://udf12.arizona.ed

    Science results from the imaging Fourier transform spectrometer SpIOMM

    Full text link
    SpIOMM is an imaging Fourier transform spectrometer designed to obtain the visible range (350 to 850 nm) spectrum of every light source in a circular field of view of 12 arcminutes in diameter. It is attached to the 1.6-m telescope of the Observatoire du Mont Megantic in southern Quebec. We present here some results of three successful observing runs in 2007, which highlight SpIOMMs capabilities to map emission line objects over a very wide field of view and a broad spectral range. In particular, we discuss data cubes from the planetary nebula M27, the supernova remnants NGC 6992 and M1, the barred spiral galaxy NGC7479, as well as Stephans quintet, an interacting group of galaxies.Comment: 10 pages, 7 figures, to appear in "Ground-based and Airborne Instrumentation for Astronomy II", SPIE conference, Marseille, 23-28 June 200

    The UV Luminosity Function of Star-forming Galaxies via Dropout Selection at Redshifts z ~ 7 and 8 from the 2012 Ultra Deep Field Campaign

    Get PDF
    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z ≃ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe ~0.65 (0.25) mag fainter in absolute UV magnitude, at z ~ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z ~ 7 and 27 at z ~ 8. Incorporating brighter archival and ground-based samples, we measure the z ≃ 7 UV luminosity function to an absolute magnitude limit of M_(UV) = –17 and find a faint end Schechter slope of ɑ =-1.87^(+0.18)_(-0.17). Using a similar color-color selection at z ≃ 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ≃ 8, ɑ =-1.94^(+0.21)_(-0.24). We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique

    The Web Epoch of Reionization Lyman-α\alpha Survey (WERLS) I. MOSFIRE Spectroscopy of z∌7−8\mathbf{z \sim 7-8} Lyman-α\alpha Emitters

    Full text link
    We present the first results from the Web Epoch of Reionization Lyman-α\alpha Survey (WERLS), a spectroscopic survey of Lyman-α\alpha emission using Keck I/MOSFIRE and LRIS. WERLS targets bright (J<26J<26) galaxy candidates with photometric redshifts of 5.5â‰Čzâ‰Č85.5\lesssim z \lesssim 8 selected from pre-JWST imaging embedded in the Epoch of Reionization (EoR) within three JWST deep fields: CEERS, PRIMER, and COSMOS-Web. Here, we report 11 z∌7−8z\sim7-8 Lyman-α\alpha emitters (LAEs; 3 secure and 8 tentative candidates) detected in the first five nights of WERLS MOSFIRE data. We estimate our observed LAE yield is ∌13\sim13%, broadly consistent with expectations assuming some loss from redshift uncertainty, contamination from sky OH lines, and that the Universe is approximately half-ionized at this epoch, whereby observable Lyman-α\alpha emission is unlikely for galaxies embedded in a neutral intergalactic medium. Our targets are selected to be UV-bright, and span a range of absolute UV magnitudes with −23.1<MUV<−19.8-23.1 < M_{\text{UV}} < -19.8. With two LAEs detected at z=7.68z=7.68, we also consider the possibility of an ionized bubble at this redshift. Future synergistic Keck+JWST efforts will provide a powerful tool for pinpointing beacons of reionization and mapping the large scale distribution of mass relative to the ionization state of the Universe.Comment: 27 pages, 8 figures; ApJ submitte
    • 

    corecore