5 research outputs found

    Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth

    Get PDF
    Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and β1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and β1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with β1 integrin and thus ensures proper development of lymphatic vessels

    Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia

    Get PDF
    An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether β1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of β1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for β1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that β1 integrin-blocking antibody or endothelial cell-specific depletion of β1 integrin attenuated FMD of the femoral artery, and blocking of β1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial β1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS

    Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia

    No full text
    An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether β1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of β1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for β1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that β1 integrin-blocking antibody or endothelial cell-specific depletion of β1 integrin attenuated FMD of the femoral artery, and blocking of β1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial β1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS

    Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia

    No full text
    An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether β1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of β1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for β1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that β1 integrin-blocking antibody or endothelial cell-specific depletion of β1 integrin attenuated FMD of the femoral artery, and blocking of β1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial β1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS
    corecore