21 research outputs found

    Regeneration of New Neurons is Preserved in Aged Vomeronasal Epithelia

    Get PDF
    During normal and diseased aging, it is thought the capacity for tissue regeneration and repair in neuronal tissues diminishes. In the peripheral olfactory system, stem cell reservoirs permit regeneration of olfactory and vomeronasal sensory neurons, a unique capacity among neurons. Following injury, a large number of new neurons can be regenerated in a young animal. However, it is unknown whether this capacity for renewal exists in aged proliferative populations. Here, we report that neuronal replacement-associated proliferation continues in the vomeronasal organ of aged (18-24 months) mice. In addition, the potential for the aged stem cell to yield a mature neuron persisted at the same rate as that observed in young animals. Furthermore, the robust regenerative capacity to respond to both acute and sustained injury following olfactory bulbectomy remains intact even in very old animals. Hence, the neuronal epithelium lining the vomeronasal organ is unique in that it contains stem cells capable of generating functional neurons throughout life and in the aged animal in particular. This persistent regenerative capacity provides hope for neuronal replacement therapies in the aged nervous system

    The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The signal transduction cascade operational in the vomeronasal organ (VNO) of the olfactory system detects odorants important for prey localization, mating, and social recognition. While the protein machinery transducing these external cues has been individually well characterized, little attention has been paid to the role of protein-protein interactions among these molecules. Development of an <it>in vitro </it>expression system for the transient receptor potential 2 channel (TRPC2), which establishes the first electrical signal in the pheromone transduction pathway, led to the discovery of two protein partners that couple with the channel in the native VNO.</p> <p>Results</p> <p>Homer family proteins were expressed in both male and female adult VNO, particularly Homer 1b/c and Homer 3. In addition to this family of scaffolding proteins, the chaperones receptor transporting protein 1 (RTP1) and receptor expression enhancing protein 1 (REEP1) were also expressed. RTP1 was localized broadly across the VNO sensory epithelium, goblet cells, and the soft palate. Both Homer and RTP1 formed protein-protein interactions with TRPC2 in native reciprocal pull-down assays and RTP1 increased surface expression of TRPC2 in <it>in vitro </it>assays. The RTP1-dependent TRPC2 surface expression was paralleled with an increase in ATP-stimulated whole-cell current in an <it>in vitro </it>patch-clamp electrophysiological assay.</p> <p>Conclusions</p> <p>TRPC2 expression and channel activity is regulated by chaperone- and scaffolding-associated proteins, which could modulate the transduction of chemosignals. The developed <it>in vitro </it>expression system, as described here, will be advantageous for detailed investigations into TRPC2 channel activity and cell signalling, for a channel protein that was traditionally difficult to physiologically assess.</p

    Injury in Aged Animals Robustly Activates Quiescent Olfactory Neural Stem Cells

    Get PDF
    While the capacity of the olfactory epithelium (OE) to generate sensory neurons continues into middle age in mice, it is presumed that this regenerative potential is present throughout all developmental stages. However, little experimental evidence exists to support the idea that this regenerative capacity remains in late adulthood, and questions about the functionality of neurons born at these late stages remain unanswered. Here, we extend our previous work in the VNO to investigate basal rates of proliferation in the OE, as well as after olfactory bulbectomy, a commonly used surgical lesion. In addition, we show that the neural stem cell retains its capacity to generate mature olfactory sensory neurons in aged animals. Finally, we demonstrate that regardless of age, a stem cell in the OE, the horizontal basal cell (HBC), exhibits a morphological switch from a flattened, quiescent phenotype to a pyramidal, proliferative phenotype following chemical lesion in aged animals. These findings provide new insights into determining whether an HBC is active or quiescent based on a structural feature as opposed to a biochemical one. More importantly, it suggests that neural stem cells in aged mice are responsive to the same signals triggering proliferation as those observed in young mice

    Selective Gene Expression by Postnatal Electroporation during Olfactory interneuron Nurogenesis

    Get PDF
    Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis

    Selective Gene Expression by Postnatal Electroporation during Olfactory Interneuron Neurogenesis

    Get PDF
    Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis

    Vomeronasal Sensory Neurons from Sternotherus Odoratus (Stinkpot/Musk Turtle) Respond to Chemosignals via the Phospholipase C System

    Get PDF
    The mammalian signal transduction apparatus utilized by vomeronasal sensory neurons (VSNs) in the vomeronasal organ (VNO) has been richly explored, while that of reptiles, and in particular, the stinkpot or musk turtle Sternotherus odoratus, is less understood. Given that the turtle\u27s well-known reproductive and mating behaviors are governed by chemical communication, 247 patch-clamp recordings were made from male and female S. odoratus VSNs to study the chemosignal-activated properties as well as the second-messenger system underlying the receptor potential. Of the total neurons tested, 88 (35%) were responsive to at least one of five complex natural chemicals, some of which demonstrated a degree of sexual dimorphism in response selectivity. Most notably, male VSNs responded to male urine with solely outward currents. Ruthenium Red, an IP3 receptor (IP3R) antagonist, failed to block chemosignal-activated currents, while the phospholipase C (PLC) inhibitor, U73122, abolished the chemosignal-activated current within 2 min, implicating the PLC system in the generation of a receptor potential in the VNO of musk turtles. Dialysis of several second messengers or their analogues failed to elicit currents in the whole-cell patch-clamp configuration, negating a direct gating of the transduction channel by cyclic adenosine monophosphate (cAMP), inositol 1,4,5-trisphosphate (IP3), arachidonic acid (AA), or diacylglycerol (DAG). Reversal potential analysis of chemosignal-evoked currents demonstrated that inward currents reversed at -5.7+/-7.8 mV (mean +/- s.e.m.; N=10), while outward currents reversed at -28.2+/-2.4 mV (N=30). Measurements of conductance changes associated with outward currents indicated that the outward current represents a reduction of a steady state inward current by the closure of an ion channel when the VSN is exposed to a chemical stimulus such as male urine. Chemosignal-activated currents were significantly reduced when a peptide mimicking a domain on canonical transient receptor potential 2 (TRPC2), to which type 3 IP3 receptor (IP3R3) binds, was included in the recording pipette. Collectively these data suggest that there are multiple transduction cascades operational in the VSNs of S. odoratus, one of which may be mediated by a non-selective cation conductance that is not gated by IP3 but may be modulated by the interaction of its receptor with the TRPC2 channel

    Heterogeneity Of Voltage- and Chemosignal-Activated Response Profiles in Vomeronasal Sensory Neurons

    No full text
    Liolaemus lizards were explored to ascertain whether they would make an amenable model to study single-cell electrophysiology of neurons in the vomeronasal organ (VNO). Despite a rich array of chemosensory-related behaviors chronicled for this genus, no anatomical or functional data exist for the VNO, the organ mediating these types of behaviors. Two Liolaemus species (L. bellii and L. nigroviridis) were collected in Central Chile in the Farellones Mountains and transported to the United States. Lizards were subjected to hypothermia and then a lethal injection of sodium pentabarbitol prior to all experiments described in the following text. Retrograde dye perfusion combined with histological techniques demonstrated a compartmentalization of the proportionally large VNO from the main olfactory epithelium (MOE) in cryosections of L. bellii. SDS-PAGE analysis of the VNO of both species demonstrated the expression of three G protein subunits, namely, G(alphao), G(alphai2), and G(beta), and the absence of G(alphaolf), G(alpha11), and G(q), the latter of which are traditionally found in the MOE. Vomeronasal (VN) neurons were enzymatically isolated for whole cell voltage-clamp electrophysiology of single neurons. Both species demonstrated a tetrodotoxin (TTX)-sensitive, rapidly inactivating sodium current and a tetraethylammonium (TEA)-sensitive potassium current that had a transient and sustained component. VN neurons were classified into two types dependent on the ratio of sodium over sustained potassium current. VN neurons exhibited outward and inward chemosignal-evoked currents when stimulated with pheromone-containing secretions taken from the feces, skin, and precloacal pores. Fifty-nine percent of the neurons were responsive to at least one compound when presented with a battery of five different secretions. The breadth of responsiveness (H metric) demonstrated a heterogeneous population of tuning with a mean of 0.29
    corecore