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Editor’s Note: These short reviews of arecent paper in the Journal, written exclusively by graduate students or postdoctoral fellows,
are intended to mimic the journal clubs that exist in your own departments or institutions. For more information on the format
and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml.

Strategies for Odor Coding in the Piriform Cortex

Jessica H. Brann, Shari R. Saideman, Matthew T. Valley, and Denise Wiedl
Department of Biological Sciences, Columbia University, New York, New York 10027
Review of Suzuki and Bekkers (http://www.jneurosci.org/cgi/content/full/26/46/11938)

What we perceive in the olfactory world is
different from what odor molecules are in
the air. With hundreds or even thousands
of aerosolized molecules present in any
single environment, our brain must be
able to simplify incoming information so
that our perceptual categories, like rose,
musk, or danger, represent more than a
chemical laundry list. In the past decade,
studies of the primary olfactory cortex,
also called the piriform cortex, indicate
that this brain region may be the first stop,
on the way from the nose to perception,
where information about the identity and
concentration of odors are combined to
form synthetic perceptual categories
(Laurent, 2002; Stopfer et al., 2003; Wil-
son et al., 2006). However, how neurons
of the piriform cortex function in such a
circuit, and in turn how this circuit codes
and transforms olfactory information, is
still relatively unexplored.

Much effort has been made to dissect
the ways in which odors bind to and acti-
vate olfactory receptors located on the
dendrites of sensory neurons in the nose
and how the mitral cells of the olfactory
bulb (OB) process olfactory information.
What has yet to be thoroughly described is
how the piriform cortex receives and
transforms information arriving from the
OB via the lateral olfactory tract (LOT).
Although the cell types present in the piri-
form cortex are known (Shepherd, 2004),
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previous work has failed to differentiate
between disparate electrophysiological
profiles and synaptic contacts made be-
tween principal cells.

In arecent paper in The Journal of Neu-
roscience, Suzuki and Bekkers (2006) take
an important step toward understanding
the circuit in the piriform cortex by elec-
trophysiological characterization of two
classes of principal cells, the superficial
pyramidal (SP) and semilunar (SL) cells
(Fig. 1A). Both cell types receive excita-
tory input from the LOT, as well as input
from associational and commissural fi-
bers (Shepherd, 2004). The initial charac-
terization of these two cell types revealed
that SP cells have a lower input resistance,
a faster membrane time constant, and a
more negative resting membrane poten-
tial than SL cells. SP cells were more likely
to generate bursts after stimulus initia-
tion, with an instantaneous firing fre-
quency that was approximately threefold
higher than that of SL cells [Suzuki and
Bekkers (2006), their Fig. 1B,C (http://
www.jneurosci.org/cgi/content/full/26/
46/11938/F1) ], whereas SL cells fired reg-
ularly throughout the duration of the
stimulus. Bursting in SP cells was, in part,
attributable to a Ni* " -sensitive Ca’ " cur-
rent and to an afterdepolarization that fol-
lowed the action potential [Suzuki and
Bekkers (2006), their Fig. 2A,C (http://
www.jneurosci.org/cgi/content/full/26/
46/11938/F2)]. In contrast, SL cells exhib-
ited a strong afterhyperpolarization after
suprathreshold stimulation, such that
subsequent EPSPs were less likely to elicit
an action potential [Suzuki and Bekkers
(2006), their Fig. 6 (http://www.jneurosci.
org/cgi/content/full/26/46/11938/F6)].

Suzuki and Bekkers (2006) also found
that strong paired-pulse facilitation was
present only in SP cells in response to LOT
stimulation. SL cells failed to exhibit facil-
itation, and stimulation of associational
inputs (layer Ib) did not elicit facilitation
in either cell type [Suzuki and Bekkers
(2006), their Fig. 4 (http://www.jneurosci.
org/cgi/content/full/26/46/11938/F4)].
Because SP cells were found to be more
excitable than SL cells, the authors next
investigated whether this was because of a
difference in synaptic physiology. Addi-
tion of the NMDA open-channel blocker
MK-801 [(+)-5-methyl-10,11-dihydro-
5H-dibenzo[a,d]cyclohepten-5,10-imine
maleate] suggested that projections to SP
cells exhibited a lower presynaptic release
probability [Suzuki and Bekkers (2006),
their Fig. 5 (http://www.jneurosci.org/
cgi/content/full/26/46/11938/F5)]. This
raises the intriguing possibility that these
cells receive input from a yet uncharacter-
ized segregation of the output of the OB:
either single fibers arising from the LOT
can make synapses with diverse release
probabilities, or different fibers can have
different release probabilities. For in-
stance, it is unclear whether subpopula-
tions of mitral and tufted cells in the main
olfactory bulb (MOB) project to different
subclasses of piriform cortex neurons. Al-
ternatively, the SP and SL cells may be in-
structive in shaping the physiology of
their presynaptic partner, as has been
shown in neocortical synapses (Koester
and Johnston, 2005).

Next, the authors aimed to character-
ize how the distinct physiology of SP and
SL cells influenced their firing properties.
To do this, the authors designed in vivo-
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like stimulation paradigms that mimicked
odor-evoked LOT activity (Fig. 1B). SP
cells tended to fire in bursts at the onset of
current injection and spiked at the fre-
quency of the input stimulus. SL cells, in
contrast, fired at a constant rate during
current injection, and in response to pat-
terned stimuli, they fire at a fraction of the
stimulus frequency [Suzuki and Bekkers
(2006), their Fig. 7 (http://www.jneurosci.
org/cgi/content/full/26/46/11938/F7) and
Fig. 8 (http://www.jneurosci.org/cgi/con-
tent/full/26/46/11938/F8)]. The authors
conclude that SP and SL cells may imple-
ment different coding strategies for olfac-
tory information.

Available data about anterior piriform
cortex principal cells indicates that olfac-
tory stimulation evokes spatially distrib-
uted and infrequent firing. Previously, it
has been suggested that SP cells in the piri-
form cortex act as coincidence detectors
of tightly timed inputs from the MOB mi-
tral cells (Laurent, 2002; Franks and Isaac-
son, 2006). The report by Suzuki and Bek-
kers (2006) highlights the capacity of SL
cells to represent the intensity of incom-
ing activity. If one assumes that SP and SL
cells receive identical input from the OB,
then their differing physiology would act
on a patterned stimulus and distribute it
in time. In this scenario, SP cells would
respond to the fine temporal features of
the stimulus, and SL cells would respond
to its intensity, very similar to temporal
coding and rate coding strategies.

The anatomy of the anterior piriform
cortex has been well studied (Haberly,
2001); however, there remain many unan-
swered questions about its circuit physiol-
ogy. These include the role of different
classes of interneurons on the output of
the principal cells, the importance of prin-
cipal cell recurrent collaterals on spatio-
temporal coding, and the importance of
centrifugal modulation. Additional char-
acterization of the relationship of MOB
output to piriform output, building on
Suzuki and Bekkers’ (2006) characteriza-
tion of SP and SL cells, will more firmly
establish the rules of rate and intensity
coding in the piriform circuit. For in-
stance, it is not known how odor concen-
tration or odor identity is represented in
the firing of OB mitral cells, making it
more difficult to address this issue in the
piriform cortex. Under what conditions
will more LOT axons be recruited? Fu-
ture experiments will undoubtedly
move to in vivo preparations to test piri-
form circuitry with odor stimulation,
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Figure 1.

Principal cells in the piriform cortex. A, Schematic of the piriform cortex, including the somata and dendrites of the

three types of principal cells: SP (green), SL (blue), and deep pyramidal (DP; gray). The activity of DP cells was not addressed by
Suzuki and Bekkers (2006). The LOT, a bundle of mitral and tufted cell axons, projects from the MOB to the piriform cortex and
makes synapses with the principal cells in layer I. B, LOT nerve stimulation (Stim.). The SP and SL cell output is related to the
strength of the stimulus. Top, When the LOT s stimulated just above threshold, a small subset of LOT fibers is recruited (shown as
red fibers). Although the SP cell fires with each LOT action potential, the SL cell does not. Bottom, At a higher stimulus intensity,
the SP cell fires more frequently, whereas the SL cell closely follows the stimulus frequency.

thereby testing hypotheses about coding
rules in the context of behavior and dur-
ing modulation from other sensory and
nonsensory modalities.
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