627 research outputs found

    Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation

    Get PDF
    Pseudouridine (Ψ) are frequently modified residues in RNA. In Eukarya, their formation is catalyzed by enzymes or by ribonucleoprotein complexes (RNPs) containing H/ACA snoRNAs. H/ACA sRNA and putative ORFs for H/ACA sRNP proteins (L7Ae, aCBF5, aNOP10 and aGAR1) were found in Archaea. Here, by using Pyrococcus abyssi recombinant proteins and an in vitro transcribed P.abyssi H/ACA sRNA, we obtained the first complete in vitro reconstitution of an active H/ACA RNP. Both L7Ae and the aCBF5 RNA:Ψ synthase bind directly the sRNA; aCBF5 also interacts directly and independently with aNOP10 and aGAR1. Presence of aCBF5, aNOP10 and a U residue at the pseudouridylation site in the target RNA are required for RNA target recruitment. In agreement, we found that the aCBF5–aNOP10 pair is the minimal set of proteins needed for the formation of a particle active for pseudouridylation. However, particles more efficient in targeted pseudouridylation can be formed with the addition of proteins L7Ae and/or aGAR1. Although necessary for optimal activity, the conserved ACA motif in the sRNA was found to be not essential

    Identification of determinants in the protein partners aCBF5 and aNOP10 necessary for the tRNA:Ψ55-synthase and RNA-guided RNA:Ψ-synthase activities

    Get PDF
    Protein aNOP10 has an essential scaffolding function in H/ACA sRNPs and its interaction with the pseudouridine(Ψ)-synthase aCBF5 is required for the RNA-guided RNA:Ψ-synthase activity. Recently, aCBF5 was shown to catalyze the isomerization of U55 in tRNAs without the help of a guide sRNA. Here we show that the stable anchoring of aCBF5 to tRNAs relies on its PUA domain and the tRNA CCA sequence. Nonetheless, interaction of aNOP10 with aCBF5 can counterbalance the absence of the PUA domain or the CCA sequence and more generally helps the aCBF5 tRNA:Ψ55-synthase activity. Whereas substitution of the aNOP10 residue Y14 by an alanine disturbs this activity, it only impairs mildly the RNA-guided activity. The opposite effect was observed for the aNOP10 variant H31A. Substitution K53A or R202A in aCBF5 impairs both the tRNA:Ψ55-synthase and the RNA-guided RNA:Ψ-synthase activities. Remarkably, the presence of aNOP10 compensates for the negative effect of these substitutions on the tRNA: Ψ55-synthase activity. Substitution of the aCBF5 conserved residue H77 that is expected to extrude the targeted U residue in tRNA strongly affects the efficiency of U55 modification but has no major effect on the RNA-guided activity. This negative effect can also be compensated by the presence of aNOP10

    Crystallization and preliminary X-ray diffraction studies of D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus.

    Get PDF
    Journal ArticleThe homotetrameric holo-D-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus has been crystallized in the presence of NADP+ using the hanging-drop vapour-diffusion method. Crystals grew from a solution containing 2-methyl-2,4-pentanediol and magnesium acetate. A native data set has been collected to 2.1 A using synchrotron radiation and cryocooling. Diffraction data have been processed in the orthorhombic system (space group P21212) with unit-cell dimensions a = 136.7, b = 153.3, c = 74.9 A and one tetramer per asymmetric unit

    A common core RNP structure shared between the small nuclear box C/D RNPs and the spliceosomal U 4 snRNP.

    Get PDF
    AbstractThe box C/D snoRNAs function in directing 2′-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/15.5kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP

    Recherche des gènes d'ARN non codant

    Get PDF
    La masse considérable de données brutes extraite des programmes de séquençage nécessite de nouvelles techniques d'analyse. La première étape visant à annoter les séquences génomiques est la recherche de régions codant des protéines (ORF pour Open Reading Frame). Cependant les gènes d'ARN non codant (ARNnc), qui ne produisent pas de protéines mais des ARN fonctionnels en tant que tels, ne présentent pas les signaux utilisés pour la détection d'ORF. La recherche systématique des gènes d'ARNnc requiert de ce fait le développement d'outils appropriés, ce qui représente un challenge de premier ordre dans l'ère post génomique. Nous proposons ainsi d'utiliser une méthode issue de l'apprentissage statistique basée sur les machines à vecteurs support (SVM) qui est applicable à l'ensemble des séquences génomiques. Cette approche a été validée par la recherche de snoRNA à boîtes C/D ou H/ACA dans le génome de la levure S. cerevisiae et dans les génomes d'Archaea du genre Pyrococcus
    • …
    corecore