14 research outputs found

    Disappearance and Appearance of an Indigestible Marker in Feces from Growing Pigs as Affected by Previous- and Current-Diet Composition

    Get PDF
    Background: Indigestible markers are commonly utilized in digestion studies, but the complete disappearance or maximum appearance of a marker in feces can be affected by diet composition, feed intake, or an animal’s BW. The objectives of this study were to determine the impact of previous (Phase 1, P1) and current- (Phase 2, P2) diet composition on marker disappearance (Cr) and appearance (Ti) in pigs fed 3 diets differing in NDF content. Results: When pigs were maintained on the 25.1, 72.5, and 125.0 g/kg NDF diets, it took 5.1, 4.1, and 2.5 d, respectively, for Cr levels to decrease below the limit of quantitation; or 4.6, 3.7, or 2.8 d, respectively, for Ti to be maximized. These effects were not, however, independent of the previous diet as indicated by the interaction between P1 and P2 diets on fecal marker concentrations (P \u3c 0.01). When dietary NDF increased from P1 to P2, it took less time for fecal Cr to decrease or fecal Ti to be maximized (an average of 2.5 d), than if NDF decreased from P1 to P2 where it took longer for fecal Cr to decrease or fecal Ti to be maximized (an average of 3.4 d). Conclusions: Because of the wide range in excretion times reported in the literature and improved laboratory methods for elemental detection, the data suggests that caution must be taken in considering dietary fiber concentrations of the past and currently fed diets so that no previous dietary marker addition remains in the digestive tract or feces such that a small amount of maker is present to confound subsequent experimental results, and that marker concentration have stabilized when these samples are collected

    Disappearance and appearance of an indigestible marker in feces from growing pigs as affected by previous- and current-diet composition

    Get PDF
    Abstract Background Indigestible markers are commonly utilized in digestion studies, but the complete disappearance or maximum appearance of a marker in feces can be affected by diet composition, feed intake, or an animal’s BW. The objectives of this study were to determine the impact of previous (Phase 1, P1) and current- (Phase 2, P2) diet composition on marker disappearance (Cr) and appearance (Ti) in pigs fed 3 diets differing in NDF content. Results When pigs were maintained on the 25.1, 72.5, and 125.0 g/kg NDF diets, it took 5.1, 4.1, and 2.5 d, respectively, for Cr levels to decrease below the limit of quantitation; or 4.6, 3.7, or 2.8 d, respectively, for Ti to be maximized. These effects were not, however, independent of the previous diet as indicated by the interaction between P1 and P2 diets on fecal marker concentrations (P < 0.01). When dietary NDF increased from P1 to P2, it took less time for fecal Cr to decrease or fecal Ti to be maximized (an average of 2.5 d), than if NDF decreased from P1 to P2 where it took longer for fecal Cr to decrease or fecal Ti to be maximized (an average of 3.4 d). Conclusions Because of the wide range in excretion times reported in the literature and improved laboratory methods for elemental detection, the data suggests that caution must be taken in considering dietary fiber concentrations of the past and currently fed diets so that no previous dietary marker addition remains in the digestive tract or feces such that a small amount of maker is present to confound subsequent experimental results, and that marker concentration have stabilized when these samples are collected

    Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    Benthic Foraminifera: Inhabitants of Low-Oxygen Environments

    No full text

    Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    No full text
    corecore