8 research outputs found

    Angiogenesis gene expression profiling in xenograft models to study cellular interactions

    No full text
    The present study describes a method to simultaneously obtain the angiogenic expression profile in tumor cells and vascular cells of a single tumor. Human- and mouse-specific primers were used for quantitative real-time RT-PCR to determine the expression of vascular endothelial growth factors A, B, C, and D, vascular endothelial growth factor receptors 1, 2, and 3, neuropilin 1 and 2, angiopoietin 1, 2, 3/4, tyrosine kinase receptors 1 and 2, basic fibroblast growth factor (bFGF) in xenograft tumors obtained by injection of human ovarian carcinoma cells in nude mice. In addition, the effect of treatment with anginex and taxol on the expression profile was analyzed. Most factors were expressed higher in vascular cells as compared to tumor cells. In response to treatment, tumor cells significantly upregulated bFGF expression and downregulated VEGF receptor expression. This was accompanied by downregulation of VEGF-B and -D, and upregulation of angiopoietin-3 as well as angiopoetin receptors in nontumor cells. In conclusion, real-time qRT-PCR combined with xenograft tumor models presents a sensitive method to monitor angiogenesis and to analyze interactions between tumor cells and nontumor cells in vivo. The approach can be applied to different research fields in which xenograft models are used

    Oxidative Stress Increases Endogenous Complement-Dependent Inflammatory and Angiogenic Responses in Retinal Pigment Epithelial Cells Independently of Exogenous Complement Sources.

    Get PDF
    Oxidative stress-induced damage of the retinal pigment epithelium (RPE) and chronic inflammation have been suggested as major contributors to a range of retinal diseases. Here, we examined the effects of oxidative stress on endogenous complement components and proinflammatory and angiogenic responses in RPE cells. ARPE-19 cells exposed for 1-48 h to H2O2 had reduced cell-cell contact and increased markers for epithelial-mesenchymal transition but showed insignificant cell death. Stressed ARPE-19 cells increased the expression of complement receptors CR3 (subunit CD11b) and C5aR1. CD11b was colocalized with cell-derived complement protein C3, which was present in its activated form in ARPE-19 cells. C3, as well as its regulators complement factor H (CFH) and properdin, accumulated in the ARPE-19 cells after oxidative stress independently of external complement sources. This cell-associated complement accumulation was accompanied by increased nlrp3 and foxp3 expression and the subsequently enhanced secretion of proinflammatory and proangiogenic factors. The complement-associated ARPE-19 reaction to oxidative stress, which was independent of exogenous complement sources, was further augmented by the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib. Our results indicate that ARPE-19 cell-derived complement proteins and receptors are involved in ARPE-19 cell homeostasis following oxidative stress and should be considered as targets for treatment development for retinal degeneration

    Anginex-conjugated liposomes for targeting of angiogenic endothelial cells

    No full text
    Identification of a tumor angiogenesis specific ligand would allow targeting of tumor vasculature. Lipidic vehicles can be used to deliver therapeutic agents for treatment of disease or contrast agents for molecular imaging. A targeting ligand would allow specific delivery of such formulations to angiogenic sites, thereby reducing side effects and gaining efficiency. Anginex, a synthetic 33-mer angiostatic peptide, has been described to home angiogenically activated endothelium, suggesting an ideal candidate as targeting ligand. To investigate this application of anginex, fluorescently labeled paramagnetic liposomes were conjugated with anginex. Using phase contrast and fluorescence microscopy as well as magnetic resonance imaging (MRI), we demonstrate that anginex-conjugated liposomes bind specifically to activated endothelial cells, suggesting application as an angiogenesis targeting agent for molecular targeting and molecular imaging of angiogenesis-dependent diseas

    Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein

    No full text
    Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with beta-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach

    Pitfalls in complement analysis: A systematic literature review of assessing complement activation

    No full text
    BACKGROUND: The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. OBJECTIVE: We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. METHODS: A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. RESULTS: A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. CONCLUSION: A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysi

    Anti-angiogenesis and anti-tumor activity of recombinant anginex

    No full text
    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

    Pitfalls in complement analysis : A systematic literature review of assessing complement activation

    No full text
    Background: The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective: We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods: A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results: A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion: A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysi
    corecore