18,250 research outputs found

    Supermetallic conductivity in bromine-intercalated graphite

    Full text link
    Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure

    Hard thermal loops in static background fields

    Full text link
    We discuss the high temperature behavior of retarded thermal loops in static external fields. We employ an analytic continuation of the imaginary time formalism and use a spectral representation of the thermal amplitudes. We show that, to all orders, the leading contributions of static hard thermal loops can be directly obtained by evaluating them at zero external energies and momenta.Comment: 5 pages, to be published in The European Physical Journal

    The theory of the reentrant effect in susceptibility of cylindrical mesoscopic samples

    Get PDF
    A theory has been developed to explain the anomalous behavior of the magnetic susceptibility of a normal metal-superconductor (NSNS) structure in weak magnetic fields at millikelvin temperatures. The effect was discovered experimentally by A.C. Mota et al \cite{10}. In cylindrical superconducting samples covered with a thin normal pure metal layer, the susceptibility exhibited a reentrant effect: it started to increase unexpectedly when the temperature lowered below 100 mK. The effect was observed in mesoscopic NSNS structures when the NN and SS metals were in good electric contact. The theory proposed is essentially based on the properties of the Andreev levels in the normal metal. When the magnetic field (or temperature) changes, each of the Andreev levels coincides from time to time with the chemical potential of the metal. As a result, the state of the NSNS structure experiences strong degeneracy, and the quasiparticle density of states exhibits resonance spikes. This generates a large paramagnetic contribution to the susceptibility, which adds up to the diamagnetic contribution thus leading to the reentrant effect. The explanation proposed was obtained within the model of free electrons. The theory provides a good description for experimental results [10]

    Recursive Calculation of Effective Potential and Variational Resummation

    Full text link
    We set up a method for a recursive calculation of the effective potential which is applied to a cubic potential with imaginary coupling. The result is resummed using variational perturbation theory (VPT), yielding an exponentially fast convergence.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/350

    Charge distribution and screening in layered graphene systems

    Full text link
    The charge distribution induced by external fields in finite stacks of graphene planes, or in semiinfinite graphite is considered. The interlayer electronic hybridization is described by a nearest neighbor hopping term, and the charge induced by the self consistent electrostatic potential is calculated within linear response (RPA). The screening properties are determined by contributions from inter- and intraband electronic transitions. In neutral systems, only interband transitions contribute to the charge polarizability, leading to insulating-like screening properties, and to oscillations in the induced charge, with a period equal to the interlayer spacing. In doped systems, we find a screening length equivalent to 2-3 graphene layers, superimposed to significant charge oscillations.Comment: 8 page

    Resummation of infrared divergences in the free-energy of spin-two fields

    Full text link
    We derive a closed form expression for the sum of all the infrared divergent contributions to the free-energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing non-interacting spin two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free-energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.Comment: 12 pages, 25 figure

    High temperature limit in static backgrounds

    Get PDF
    We prove that the hard thermal loop contribution to static thermal amplitudes can be obtained by setting all the external four-momenta to zero before performing the Matsubara sums and loop integrals. At the one-loop order we do an iterative procedure for all the 1PI one-loop diagrams and at the two-loop order we consider the self-energy. Our approach is sufficiently general to the extent that it includes theories with any kind of interaction vertices, such as gravity in the weak field approximation, for dd space-time dimensions. This result is valid whenever the external fields are all bosonic.Comment: 15 pages, 11 figures. To be published in Physical Review
    corecore