8 research outputs found

    A half-century of geologic and geothermic investigations in Iceland: The legacy of Kristjn Smundsson

    Get PDF
    One of the World's premier field geologists, Kristján Sæmundsson led immense geological mapping programs and authored or co-authored nearly all geological maps of Iceland during the past half century, including the first modern bedrock and tectonic maps of the whole country. These monumental achievements collectively yield the most inclusive view of an extensional plate boundary anywhere on Earth. When Kristján began his work in 1961, the relation of Iceland to sea-floor spreading was not clear, and plate tectonics had not yet been invented. Kristján resolved key obstacles by demonstrating that the active rifting zones in Iceland had shifted over time and were linked by complex transforms to the mid-ocean spreading ridge, thus making the concept of sea-floor spreading in Iceland acceptable to those previously skeptical. Further, his insights and vast geological and tectonic knowledge on both high- and low-temperature geothermal areas in Iceland yielded a major increase in knowledge of geothermal systems, and probably no one has contributed more than he to Icelandic energy development. Kristján's legacy is comprised by his numerous superb maps on a variety of scales, the high quality papers he produced, the impactful ideas generated that were internationally diffused, and the generations of colleagues and younger people he inspired, mentored, or otherwise positively influenced with his knowledge and generous attitud

    Temporal stress changes associated with the 2008 May 29 Mw 6 earthquake doublet in the western South Iceland Seismic Zone

    No full text
    On 2008 May 29, two magnitude Mw ~ 6 earthquakes occurred on two adjacent N-S faults in the western South Iceland Seismic Zone. The first main shock was followed approximately 3 s later by the rupture on a parallel fault, about 5 km to the west. An intense aftershock sequence was mostly confined to the western fault and an E-W aligned zone, extending west of the main shock region into the Reykjanes oblique rift. In this study, a total of 325 well-constrained focal mechanisms were obtained using data from the permanent Icelandic SIL seismic network and a temporary network promptly installed in the source region following the main shocks, which allowed a high-resolution stress inversion in short time intervals during the aftershock period. More than 800 additional focal mechanisms for the time period 2001-2009, obtained from the permanent SIL network, were analysed to study stress changes associated with the main shocks. Results reveal a coseismic counter-clockwise rotation of the maximum horizontal stress of 11 +/- 10 degrees ( 95 per cent confidence level) in the main rupture region. From previous fault models obtained by inversion of geodetic data, we estimate a stress drop of about half of the background shear stress on the western fault. With a stress drop of 8-10 MPa, the pre-event shear stress is estimated to 16-20 MPa. The apparent weakness of the western fault may be caused by fault properties, pore fluid pressure and the vicinity of the fault to the western rift zone, but may also be due to the dynamic stress increase on the western fault by the rupture on the eastern fault. Further, a coseismic change of the stress regime-from normal faulting to strike-slip faulting-was observed at the northern end of the western fault. This change could be caused by stress heterogeneities, but may also be due to a southward shift in the location of the aftershocks as compared to prior events

    A half-century of geologic and geothermic investigations in Iceland: The legacy of Kristjan Saemundsson

    No full text
    One of the World's premier field geologists, Kristjan Saemundsson led immense geological mapping programs and authored or co-authored nearly all geological maps of Iceland during the past half century, including the first modern bedrock and tectonic maps of the whole country. These monumental achievements collectively yield the most inclusive view of an extensional plate boundary anywhere on Earth. When Kristjan began his work in 1961, the relation of Iceland to sea-floor spreading was not clear, and plate tectonics had not yet been invented. Kristjan resolved key obstacles by demonstrating that the active rifting zones in Iceland had shifted over time and were linked by complex transforms to the mid-ocean spreading ridge, thus making the concept of sea-floor spreading in Iceland acceptable to those previously skeptical. Further, his insights and vast geological and tectonic knowledge on both high- and low-temperature geothermal areas in Iceland yielded a major increase in knowledge of geothermal systems, and probably no one has contributed more than he to Icelandic energy development. Kristjan's legacy is comprised by his numerous superb maps on a variety of scales, the high quality papers he produced, the impactful ideas generated that were internationally diffused, and the generations of colleagues and younger people he inspired, mentored, or otherwise positively influenced with his knowledge and generous attitude. (C) 2018 Published by Elsevier B.V
    corecore