16 research outputs found
Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.
Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans
Downloaded from
Background: Rotator cuff tears are a common source of shoulder pain. High rates (20%-94%) of structural failure of the repair have been attributed to multiple factors, including poor repair tissue quality and tendon-to-bone integration. Biologic augmentation using growth factors has potential to promote tendon-to-bone integration, improving the function and long-term success of the repair. One such growth factor is platelet-derived growth factor-BB (PDGF-BB), which has been shown to improve healing in tendon and bone repair models
Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation
<p>Abstract</p> <p>Background</p> <p>Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods <it>in vivo</it>. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model.</p> <p>Methods</p> <p>Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 ÎĽm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis.</p> <p>Results</p> <p>After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls.</p> <p>Conclusion</p> <p>The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential <it>in vivo </it>osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.</p
Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits
Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits
Peripheral quantitative computed tomography (pQCT) predicts humeral diaphysis torsional mechanical properties with good short-term precision.
Peripheral quantitative computed tomography (pQCT) is a popular tool for non-invasively estimating bone mechanical properties. Previous studies have demonstrated pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remains unknown. The aim of the current study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [IP] and polar Strength Strain Index [SSIP]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing six repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSIP both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSIP at the midshaft humerus were less than 1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans
The effect of residency training on arthroscopic knot tying and knot stability: which knot is best tied by Orthopaedic surgery residents?
Abstract Background The aim of this study is to evaluate which of three arthroscopic knots are most reliably taught to and executed by residents at varying levels of training. Methods Three arthroscopic knots, the Samsung Medical Center (SMC), the Weston, and the surgeon’s knot, were taught to 16 orthopaedic surgery residents. Each knot was tied in triplicate at two sessions 1 week apart. The knots were then biomechanically tested for strength. Corresponding knots tied by a sports medicine fellow served as the respective controls. Results Comparing all knots regardless of year of training, the SMC knot failed at significantly higher loads (237.2 ± 66.6 N) than the surgeon’s knot (203.7 ± 45.3 N, p = 0.049) and the Weston knot (193.5 ± 56.1 N, p = 0.013). No significant differences in knot strength were found when comparing knots tied by residents at different levels of training and when comparing residents to the sports medicine fellow. There was no difference in conditioning elongation between surgeon’s (p = 0.343), Weston (p = 0.486), or SMC knots (p = 0.200) tied by post-graduate year one and five residents. Conclusions We report the first study that evaluates the loop strength of an arthroscopically tied knot performed by orthopaedic surgery residents in various levels of training. In our cohort, the SMC knot required a higher load to failure, when compared to the Surgeon’s and Weston knot, after a simple arthroscopic knot tying curriculum. Based on these findings, he SMC knot should be considered as a part of future orthopaedic surgery resident arthroscopic training programs