137 research outputs found

    Possibilities of coal–gas substitution in East Asia: A comparison among China, Japan and South Korea

    Get PDF
    Natural gas is currently playing an increasingly significant role in low carbon development, as it provides a credible pathway to meet rising energy demand while emitting fewer greenhouse gases than from using other fossil fuels such as coal and oil. In this paper, a log linear trans-log production function model is established to investigate inter-fuel elasticity of substitution between coal, oil, natural gas and electricity in China, Japan and South Korea, respectively. In order to overcome the problem of multicollinearity, the ridge regression approach is therefore adopted to estimate the parameters of the function. Results show elasticity estimates of both coal–gas substitution and coal–electricity substitution to be positive over 1985–2012, suggesting that these two energy input pairs are substitutes at least to some extent. It also reveals that relatively higher substitution possibilities between coal and natural gas, and less opportunities to substitute coal with other fuels in China. In addition, the model results also suggest the elasticities of coal–gas substitution in China are much larger than that in Japan and South Korea, indicating there is higher possibilities of coal–gas substitution in China

    Methane emissions : choosing the right climate metric and time horizon

    Get PDF
    Methane is a more potent greenhouse gas (GHG) than CO2, but it has a shorter atmospheric lifespan, thus its relative climate impact reduces significantly over time. Different GHGs are often conflated into a single metric to compare technologies and supply chains, such as the global warming potential (GWP). However, the use of GWP is criticised, regarding: (1) the need to select a timeframe; (2) its physical basis on radiative forcing; and (3) the fact that it measures the average forcing of a pulse over time rather than a sustained emission at a specific end-point in time. Many alternative metrics have been proposed which tackle different aspects of these limitations and this paper assesses them by their key attributes and limitations, with respect to methane emissions. A case study application of various metrics is produced and recommendations are made for the use of climate metrics for different categories of applications. Across metrics, CO2 equivalences for methane range from 4-199 gCO2eq./gCH4, although most estimates fall between 20 and 80 gCO2eq./gCH4. Therefore the selection of metric and time horizon for technology evaluations is likely to change the rank order of preference, as demonstrated herein with the use of natural gas as a shipping fuel versus alternatives. It is not advisable or conservative to use only a short time horizon, e.g. 20 years, which disregards the long-term impacts of CO2 emissions and is thus detrimental to achieving eventual climate stabilisation. Recommendations are made for the use of metrics in 3 categories of applications. Short-term emissions estimates of facilities or regions should be transparent and use a single metric and include the separated contribution from each GHG. Multi-year technology assessments should use both short and long term static metrics (e.g. GWP) to test robustness of results. Longer term energy assessments or decarbonisation pathways must use both short and long-term metrics and where this has a large impact on results, climate models should be incorporated. Dynamic metrics offer insight into the timing of emissions, but may be of only marginal benefit given uncertainties in methodological assumptions

    Neutrophil histamine contributes to inflammation in mycoplasma pneumonia

    Get PDF
    Mycoplasmas cause chronic inflammation and are implicated in asthma. Mast cells defend against mycoplasma infection and worsen allergic inflammation, which is mediated partly by histamine. To address the hypothesis that mycoplasma provokes histamine release, we exposed mice to Mycoplasma pulmonis, comparing responses in wild-type and mast cell–deficient KitW-sh/KitW-sh (W-sh) mice. Low histamine levels in uninfected W-sh mice confirmed the conventional wisdom that mast cells are principal sources of airway and serum histamine. Although mycoplasma did not release histamine acutely in wild-type airways, levels rose up to 50-fold above baseline 1 week after infection in mice heavily burdened with neutrophils. Surprisingly, histamine levels also rose profoundly in infected W-sh lungs, increasing in parallel with neutrophils and declining with neutrophil depletion. Furthermore, neutrophils from infected airway were highly enriched in histamine compared with naive neutrophils. In vitro, mycoplasma directly stimulated histamine production by naive neutrophils and strongly upregulated mRNA encoding histidine decarboxylase, the rate-limiting enzyme in histamine synthesis. In vivo, treatment with antihistamines pyrilamine or cimetidine decreased lung weight and severity of pneumonia and tracheobronchitis in infected W-sh mice. These findings suggest that neutrophils, provoked by mycoplasma, greatly expand their capacity to synthesize histamine, thereby contributing to lung and airway inflammation

    A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture

    Get PDF
    With the rapid development of renewable energy harvesting technologies, there is a significant demand for long-duration energy storage technologies that can be deployed at grid scale. In this regard, polysulfide-air redox flow batteries demonstrated great potential. However, the crossover of polysulfide is one significant challenge. Here, we report a stable and cost-effective alkaline-based hybrid polysulfide-air redox flow battery where a dual-membrane-structured flow cell design mitigates the sulfur crossover issue. Moreover, combining manganese/carbon catalysed air electrodes with sulfidised Ni foam polysulfide electrodes, the redox flow battery achieves a maximum power density of 5.8 mW cm−2 at 50% state of charge and 55 °C. An average round-trip energy efficiency of 40% is also achieved over 80 cycles at 1 mA cm−2. Based on the performance reported, techno-economic analyses suggested that energy and power costs of about 2.5 US/kWhand1600US/kWh and 1600 US/kW, respectively, has be achieved for this type of alkaline polysulfide-air redox flow battery, with significant scope for further reduction

    Module design and fault diagnosis in electric vehicle batteries

    No full text
    Systems integration issues, such as electrical and thermal design and management of full battery packs - often containing hundreds of cells - have been rarely explored in the academic literature. In this paper we discuss the design and construction of a 9 kWh battery pack for a motorsports application. The pack contained 504 lithium cells arranged into 2 sidepods, each containing 3 modules, with each module in a 12P7S configuration. This paper focuses particularly on testing the full battery pack and diagnosing subsequent problems related to cells being connected in parallel. We demonstrate how a full vehicle test can be used to identify malfunctioning strings of cells for further investigation. After individual cell testing it was concluded that a single high inter-cell contact resistance was causing currents to flow unevenly within the pack, leading to cells being unequally worked. This is supported by a Matlab/Simulink model of one battery module, including contact resistances. Over time the unequal current flowing through cells can lead to significant differences in cells' state of charge and open circuit voltages, large currents flowing between cells even when the load is disconnected, cells discharging and aging more quickly than others, and jeopardise capacity and lifetime of the pack

    Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage

    Get PDF
    Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes
    • …
    corecore