3,255 research outputs found

    SAM 2 measurements of the polar stratospheric aerosol. Volume 3: October 1979 to April 1980

    Get PDF
    The Stratospheric Aerosol Measurement (SAM) II sensor is aboard the Earth-orbiting Nimbus 7 spacecraft providing extinction measurements of the Antarctic and Arctic stratospheric aerosol with a vertical resolution of 1 km. Representative examples and weekly averages of aerosol data and corresponding temperature profiles for the time and place of each SAM II measurement (Oct. 1979 through Apr. 1980) are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted and weekly aerosol optical depths are calculated. Seasonal variations and variations in space (altitude and longitude) for both polar regions are easily seen. Typical values of aerosol extinction at the SAM II wavelength of 1.0 microns for this time period are 2 to 4 times .0001/km in the main stratospheric aerosol layer. Optical depths for the stratosphere are about 0.002 to 0.003, up slightly over normal background levels (due to the eruption of Sierra Negra, Nov. 1979). Polar stratospheric clouds at altitudes of about 22 km were observed during the Arctic winter. A ready-to-use format containing a representative sample of the third 6 months of data to be used in atmospheric and climatic studies is presented

    SAM 2 measurements of the polar stratospheric aerosol, volume 8

    Get PDF
    The Stratospheric Aerosol Measurement (SAM) 2 sensor aboard Nimbus 7 is providing extinction measurements of Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages including corresponding temperature profiles provided by NOAA for the time and place of each SAM 2 measurement (Apr. 1982 - Oct. 1982) are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted, and aerosol optical depths are calculated for each week. Typical values of aerosol extinction at 1.0 microns in the main stratospheric aerosol layer are approximately 4 to 6 times .0001/km at the beginning to 1 to 2 times .001/km at the end of the time period for the Antarctic region and approximately 1 to 3 times .001/km for the Arctic region throughout the time period. Stratospheric optical depths are about 0.002 to 0.009 for the Antarctic region and about 0.007 at the beginning to 0.024 at the end of the time period for the Arctic region. Polar stratospheric clouds were observed during the Antarctic winter, as expected. This report provides, in a ready-to-use format, a representative sample of the eighth 6 months of data to be used in atmospheric and climatic studies

    Understanding heat stress in beef cattle

    Get PDF
    Thermal stress is the result of a misbalance between heat produced or gained from the environment and the amount of heat lost to the environment. The level of thermal stress can range from minor or no effect to death of vulnerable animals. Under summertime conditions, thermal stress results in hyperthermia or heat stress. Heat stress in feedlot cattle is a common summertime occurrence in cattle-producing parts of the world (USA, Australia, Brazil, etc.). Effects on animals experiencing heat stress include decreases in feed intake, animal growth, and production efficiency. During these extreme events, animal losses can exceed 5% of all cattle on feed in a single feedlot. Luckily, these extreme events are generally very localized and last only a day or two. However, these losses can be devastating to individual producers within the affected area. The level of heat stress an individual animal will experience is a result of a combination of three distinct components: environmental conditions, individual animal susceptibility, and management of the herd. Environmental components include temperature, humidity, wind speed, and solar radiation. Several indices have been developed to summarize the different components into a single value. Individual animal susceptibility is influenced by many different factors including coat color, sex, temperament, previous health history, acclimation, and condition score. Finally, management greatly influences the effects of thermal stress. Management factors can be broken into four distinct categories: feed, water, environmental influences, and handling. Understanding these risk factors and how each one influences animal stress will aid in the development of management strategies and how to implement them. Management strategies that can be employed at the right time and to the correct groups of animals will increase benefits to the animals and limit costs for the producers

    Maneuver-Based Cross-Validation Approach for Angle-of-Attack Estimation

    Get PDF
    The estimation of the Angle of Attack (AOA) and Angle of Sideslip (AOS) is crucial for flight monitoring and control. However, a gap has been identified on the data selection technique for the class of estimators based on data-driven methods, such as the synthetic sensor based on Neural Network (NN). This paper proposes a Cross Validation (CV) technique applied on a manoeuver-based partitioning method to provide evidence that a given selection of data can lead to better estimation performance, with the final aim of providing a list of manoeuvers suitable for the training phase of the estimator. Results are shown using simulated data related to the CleanSky 2 project MIDAS

    Green's Relations in Finite Transformation Semigroups

    Get PDF
    We consider the complexity of Green's relations when the semigroup is given by transformations on a finite set. Green's relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1

    Uniaxial pressure dependence of magnetic order in MnSi

    Full text link
    We report comprehensive small angle neutron scattering (SANS) measurements complemented by ac susceptibility data of the helical order, conical phase and skyrmion lattice phase (SLP) in MnSi under uniaxial pressures. For all crystallographic orientations uniaxial pressure favours the phase for which a spatial modulation of the magnetization is closest to the pressure axis. Uniaxial pressures as low as 1kbar applied perpendicular to the magnetic field axis enhance the skyrmion lattice phase substantially, whereas the skyrmion lattice phase is suppressed for pressure parallel to the field. Taken together we present quantitative microscopic information how strain couples to magnetic order in the chiral magnet MnSi.Comment: 23 pages, includes supplemen

    Band structure of helimagnons in MnSi resolved by inelastic neutron scattering

    Full text link
    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh\lambda_h. Its spin-wave excitations -- the helimagnons -- experience Bragg scattering off this periodicity leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.Comment: 5 pages, 3 figures; (v2) slight modifications, published versio

    SAM II measurements of the polar stratospheric aerosol. Volume 6: April to October 1981

    Get PDF
    The Stratospheric Aerosol Measurement (SAM) II sensor is aboard the Earth-orbiting Nimbus 7 spacecraft providing extinction measurements of the Antarctic and Arctic stratospheric aerosols with a vertical resolution of 1 km. Representative examples and weekly averages of these aerosol data and corresponding temperature profiles (Apr. 1981 to Oct. 1981) are presented. Contours of aerosol extinction as a function of altitude and longitude or time are plotted and weekly aerosol optical depths are calculated. Stratospheric optical depths are 0.002 to 0.003 for the Antarctic region and 0.006 to 0.007 at the beginning to 0.003 to 0.004 at the end of the time period for the Arctic region. Polar stratospheric clouds at altitudes between the tropopause and 20 km were observed during the Antarctic winter. A ready-to-use format containing a representative sample of the sixth 6 months of data to be used in atmospheric and climatic studies is reported
    corecore