38 research outputs found
An interoperable and self-adaptive approach for SLA-based service virtualization in heterogeneous Cloud environments
Cloud computing is a newly emerged computing infrastructure that builds on the latest achievements of diverse research areas, such as Grid computing, Service-oriented computing, business process management and virtualization. An important characteristic of Cloud-based services is the provision of non-functional guarantees in the form of Service Level Agreements (SLAs), such as guarantees on execution time or price. However, due to system malfunctions, changing workload conditions, hard- and software failures, established SLAs can be violated. In order to avoid costly SLA violations, flexible and adaptive SLA attainment strategies are needed. In this paper we present a self-manageable architecture for SLA-based service virtualization that provides a way to ease interoperable service executions in a diverse, heterogeneous, distributed and virtualized world of services. We demonstrate in this paper that the combination of negotiation, brokering and deployment using SLA-aware extensions and autonomic computing principles are required for achieving reliable and efficient service operation in distributed environments. © 2012 Elsevier B.V. All rights reserved
End-to-End QoS Support for a Medical Grid Service Infrastructure
Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service
An SLA-based resource virtualization approach for on-demand service provision
Cloud computing is a newly emerged research infrastructure that builds on the latest achievements of diverse research areas, such as Grid computing, Service-oriented computing, business processes and virtualization. In this paper we present an architecture for SLA-based resource virtualization that provides an extensive solution for executing user applications in Clouds. This work represents the first attempt to combine SLA-based resource negotiations with virtualized resources in terms of on-demand service provision resulting in a holistic virtualization approach. The architecture description focuses on three topics: agreement negotiation, service brokering and deployment using virtualization. The contribution is also demonstrated with a real-world case study
Autonomic SLA-Aware service virtualization for distributed systems
Cloud Computing builds on the latest achievements of diverse research areas, such as Grid Computing, Service-oriented computing, business processes and virtualization. Managing such heterogeneous environments requires sophisticated interoperation of adaptive coordinating components. In this paper we introduce an SLA-aware Service Virtualization architecture that provides non-functional guarantees in the form of Service Level Agreements and consists of a three-layered infrastructure including agreement negotiation, service brokering and on demand deployment. In order to avoid costly SLA violations, flexible and adaptive SLA attainment strategies are used with a failure propagation approach. We demonstrate the advantages of our proposed solution with a biochemical case study in a Cloud simulation environment. © 2011 IEEE
Facilitating self-adaptable inter-cloud management
Cloud Computing infrastructures have been developed as individual islands, and mostly proprietary solutions so far. However, as more and more infrastructure providers apply the technology, users face the inevitable question of using multiple infrastructures in parallel. Federated cloud management systems offer a simplified use of these infrastructures by hiding their proprietary solutions. As the infrastructure becomes more complex underneath these systems, the situations (like system failures, handling of load peaks and slopes) that users cannot easily handle, occur more and more frequently. Therefore, federations need to manage these situations autonomously without user interactions. This paper introduces a methodology to autonomously operate cloud federations by controlling their behavior with the help of knowledge management systems. Such systems do not only suggest reactive actions to comply with established Service Level Agreements (SLA) between provider and consumer, but they also find a balance between the fulfillment of established SLAs and resource consumption. The paper adopts rule-based techniques as its knowledge management solution and provides an extensible rule set for federated clouds built on top of multiple infrastructures. © 2012 IEEE
LAYSI: A layered approach for SLA-violation propagation in self-manageable cloud infrastructures
Cloud computing represents a promising comput ing paradigm where computing resources have to be allocated to software for their execution. Self-manageable Cloud in frastructures are required to achieve that level of flexibility on one hand, and to comply to users' requirements speci fied by means of Service Level Agreements (SLAs) on the other. Such infrastructures should automatically respond to changing component, workload, and environmental conditions minimizing user interactions with the system and preventing violations of agreed SLAs. However, identification of sources responsible for the possible SLA violation and the decision about the reactive actions necessary to prevent SLA violation is far from trivial. First, in this paper we present a novel approach for mapping low-level resource metrics to SLA parameters necessary for the identification of failure sources. Second, we devise a layered Cloud architecture for the bottom-up propagation of failures to the layer, which can react to sensed SLA violation threats. Moreover, we present a communication model for the propagation of SLA violation threats to the appropriate layer of the Cloud infrastructure, which includes negotiators, brokers, and automatic service deployer. © 2010 IEEE
Cloud computing: survey on energy efficiency
International audienceCloud computing is today’s most emphasized Information and Communications Technology (ICT) paradigm that is directly or indirectly used by almost every online user. However, such great significance comes with the support of a great infrastructure that includes large data centers comprising thousands of server units and other supporting equipment. Their share in power consumption generates between 1.1% and 1.5% of the total electricity use worldwide and is projected to rise even more. Such alarming numbers demand rethinking the energy efficiency of such infrastructures. However, before making any changes to infrastructure, an analysis of the current status is required. In this article, we perform a comprehensive analysis of an infrastructure supporting the cloud computing paradigm with regards to energy efficiency. First, we define a systematic approach for analyzing the energy efficiency of most important data center domains, including server and network equipment, as well as cloud management systems and appliances consisting of a software utilized by end users. Second, we utilize this approach for analyzing available scientific and industrial literature on state-of-the-art practices in data centers and their equipment. Finally, we extract existing challenges and highlight future research directions
Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice Theory and Practice
Achieving Federated and Self-Manageable Cloud Infrastructures: Theory and Practice overviews current developments in cloud computing concepts, architectures, infrastructures and methods, focusing on the needs of small to medium enterprises
Towards Taxonomy based Software Security Standard and Tool Selection for Critical Infrastructure IT in the Cloud
In: The 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013). IEEE; 2013. (published in 2014)Informationstechnologie und Informationsmanagemen