36 research outputs found
Prevalence of hepatic iron overload and association with hepatocellular cancer in end-stage liver disease: results from the National Hemochromatosis Transplant Registry
Background : It is unclear whether mild to moderate iron overload in liver diseases other than hereditary haemochromatosis (HH) contributes to hepatocellular carcinoma. This study examined the association between hepatic iron grade and hepatocellular carcinoma in patients with end-stage liver disease of diverse aetiologies. Methods : The prevalence of hepatic iron overload and hepatocellular carcinoma was examined in 5224 patients undergoing liver transplantation. Explant pathology reports were reviewed for the underlying pathological diagnosis, presence of hepatocellular carcinoma and degree of iron staining. The distribution of categorical variables was studied using Χ 2 tests. Results : Both iron overload and hepatocellular carcinoma were the least common with biliary cirrhosis (1.8 and 2.8% respectively). Hepatocellular carcinoma was the most common in patients with hepatitis B (16.7%), followed by those with hepatitis C (15.1%) and HH (14.9%). In the overall cohort, any iron overload was significantly associated with hepatocellular carcinoma ( P =0.001), even after adjustment for the underlying aetiology of liver disease. The association between hepatic iron content and hepatocellular carcinoma was the strongest in patients with biliary cirrhosis ( P <0.001) and hepatitis C ( P <0.001). Conclusions : Iron overload is associated with hepatocellular carcinoma in patients with end-stage liver disease, suggesting a possible carcinogenic or cocarcinogenic role for iron in chronic liver disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75573/1/j.1478-3231.2007.01596.x.pd
Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression
<p>Abstract</p> <p>Background</p> <p>Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR.</p> <p>Methods</p> <p>Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored <it>in vitro </it>by the capacity of Cdk2 to phosphorylate histone H1.</p> <p>Results</p> <p>MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR.</p> <p>Conclusions</p> <p>Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased hypodiploid DNA content. Contrary to common opinion, growth inhibition of cancer cells by antiprogestin MF is not dependent upon expression of classical, nuclear PR.</p
Investigation of Genetic Variation Underlying Central Obesity amongst South Asians
The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966,G0700931), the Wellcome Trust (084723/Z/08/Z), and the NIHR (RP-PG-0407-10371). The work was carried out in part at the NIHR/Wellcome Trust Imperial Clinical Research Facility. The Sikh Diabetes Study is supported by National Institute of Health grants KO1TW006087, funded by the Fogarty International Center, R01DK082766, funded by National Institute of Diabetes and Digestive and Kidney Diseases, and a seed grant from University of Oklahoma Health Sciences Center, Oklahoma City, USA. The Mauritius Family Study is supported by the Mauritius Ministry of Health and Quality of Life, Australian Government National Health and Medical Research Council NHMRC project grant numbers 1020285 and 1037916, the Victorian Government’s OIS Program, and partly funded by US National Institutes of Health Grant DK-25446. We thank the participants and research staff who made the study possible.South Asians are 1/4 of the world’s population and have increased susceptibility to central obesity and related cardiometabolic disease. Knowledge of genetic variants affecting risk of central obesity is largely based on genome-wide association studies of common SNPs in Europeans. To evaluate the contribution of DNA sequence variation to the higher levels of central obesity (defined as waist hip ratio adjusted for body mass index, WHR) among South Asians compared to Europeans we carried out: i) a genome-wide association analysis of >6M genetic variants in 10,318 South Asians with focused analysis of population-specific SNPs; ii) an exome-wide association analysis of ~250K SNPs in protein-coding regions in 2,637 South Asians; iii) a comparison of risk allele frequencies and effect sizes of 48 known WHR SNPs in 12,240 South Asians compared to Europeans. In genome-wide analyses, we found no novel associations between common genetic variants and WHR in South Asians at P<5x10-8; variants showing equivocal association with WHR (P<1x10-5) did not replicate at P<0.05 in an independent cohort of South Asians (N = 1,922) or in published, predominantly European meta-analysis data. In the targeted analyses of 122,391 population-specific SNPs we also found no associations with WHR in South Asians at P<0.05 after multiple testing correction. Exome-wide analyses showed no new associations between genetic variants and WHR in South Asians, either individually at P<1.5x10-6 or grouped by gene locus at P<2.5x10−6. At known WHR loci, risk allele frequencies were not higher in South Asians compared to Europeans (P = 0.77), while effect sizes were unexpectedly smaller in South Asians than Europeans (P<5.0x10-8). Our findings argue against an important contribution for population-specific or cosmopolitan genetic variants underlying the increased risk of central obesity in South Asians compared to Europeans.Yeshttp://www.plosone.org/static/editorial#pee
Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling
Abstract Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement
The AST ALT ratio as a predictor of cirrhosis in C282Y-associated hereditary hemochromatosis
WOS: 00007977840511
Management of hemochromatosis
The complications of iron overload in hemochromatosis can be avoided by early diagnosis and appropriate management. Therapeutic phlebotomy is used to remove excess iron and maintain low normal body iron stores, and it should be initiated in men with serum ferritin levels of 300 μg/L or more and in women with serum ferritin levels of 200 μg/L or more, regardless of the presence or absence of symptoms. Typically, therapeutic phlebotomy consists of 1) removal of 1 unit (450 to 500 mL) of blood weekly until the serum ferritin level is 10 to 20 μg/L and 2) maintenance of the serum ferritin level at 50 μg/L or less thereafter by periodic removal of blood. Hyperferritinemia attributable to iron overload is resolved by therapeutic phlebotomy. When applied before iron overload becomes severe, this treatment also prevents complications of iron overload, including hepatic cirrhosis, primary liver cancer, diabetes mellitus, hypogonadotrophic hypogonadism, joint disease, and cardiomyopathy. In patients with established iron overload disease, weakness, fatigue, increased hepatic enzyme concentrations, right upper quadrant pain, and hyperpigmentation are often substantially alleviated by therapeutic phlebotomy. Patients with liver disease, joint disease, diabetes mellitus and other endocrinopathic abnormalities, and cardiac abnormalities often require additional, specific management. Dietary management of hemochromatosis includes avoidance of medicinal iron, mineral supplements, excess vitamin C, and uncooked seafoods. This can reduce the rate of iron reaccumulation; reduce retention of nonferrous metals; and help reduce complications of liver disease, diabetes mellitus, and Vibrio infection. This comprehensive approach to the management of hemochromatosis can decrease the frequency and severity of iron overload, improve quality of life, and increase longevity