55 research outputs found

    Novel Collective Effects in Integrated Photonics

    Full text link
    Superradiance, the enhanced collective emission of energy from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study theoretically the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance for the first time in waveguide arrays in integrated photonics. Furthermore, we describe how pairwise correlations within the ensemble can be measured with this architecture. These pairwise correlations are an integral part of the phenomenon of superradiance and have never been observed in experiments to date.Comment: 7 pages, 3 figure

    Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing

    Full text link
    In this article, we report the recent progress on decoherence dynamics of electrons in quantum dot quantum computing systems using the exact master equation we derived recently based on the Feynman-Vernon influence functional approach. The exact master equation is valid for general nanostructure systems coupled to multi-reservoirs with arbitrary spectral densities, temperatures and biases. We take the double quantum dot charge qubit system as a specific example, and discuss in details the decoherence dynamics of the charge qubit under coherence controls. The decoherence dynamics risen from the entanglement between the system and the environment is mainly non-Markovian. We further discuss the decoherence of the double-dot charge qubit induced by quantum point contact (QPC) measurement where the master equation is re-derived using the Keldysh non-equilibrium Green function technique due to the non-linear coupling between the charge qubit and the QPC. The non-Markovian decoherence dynamics in the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence and Entanglement" in Quantum Inf. Proces

    Effect of age, sex and gender on pain sensitivity: A narrative review

    Get PDF
    © 2017 Eltumi And Tashani. Introduction: An increasing body of literature on sex and gender differences in pain sensitivity has been accumulated in recent years. There is also evidence from epidemiological research that painful conditions are more prevalent in older people. The aim of this narrative review is to critically appraise the relevant literature investigating the presence of age and sex differences in clinical and experimental pain conditions. Methods: A scoping search of the literature identifying relevant peer reviewed articles was conducted on May 2016. Information and evidence from the key articles were narratively described and data was quantitatively synthesised to identify gaps of knowledge in the research literature concerning age and sex differences in pain responses. Results: This critical appraisal of the literature suggests that the results of the experimental and clinical studies regarding age and sex differences in pain contain some contradictions as far as age differences in pain are concerned. While data from the clinical studies are more consistent and seem to point towards the fact that chronic pain prevalence increases in the elderly findings from the experimental studies on the other hand were inconsistent, with pain threshold increasing with age in some studies and decreasing with age in others. Conclusion: There is a need for further research using the latest advanced quantitative sensory testing protocols to measure the function of small nerve fibres that are involved in nociception and pain sensitivity across the human life span. Implications: Findings from these studies should feed into and inform evidence emerging from other types of studies (e.g. brain imaging technique and psychometrics) suggesting that pain in the older humans may have unique characteristics that affect how old patients respond to intervention

    Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice.

    No full text
    The bioavailability of nitric oxide (NO) within the vascular wall is limited by superoxide anions (O2.-). The relevance of extracellular superoxide dismutase (ecSOD) for the detoxification of vascular O2.- is unknown. We determined the involvement of ecSOD in the control of blood pressure and endothelium-dependent responses in angiotensin II-induced hypertension and renovascular hypertension induced by the two-kidney, one-clip model in wild-type mice and mice lacking the ecSOD gene. Blood pressure was identical in sham-operated ecSOD+/+ and ecSOD-/- mice. After 6 days of angiotensin II-treatment and 2 and 4 weeks after renal artery clipping, blood pressure was significantly higher in ecSOD-/- than ecSOD+/+ mice. Recombinant ecSOD selectively decreased blood pressure in hypertensive ecSOD-/- mice, whereas ecSOD had no effect in normotensive and hypertensive ecSOD+/+ mice. Compared with sham-operated ecSOD+/+ mice, sham-operated ecSOD-/- mice exhibited attenuated acetylcholine-induced relaxations. These responses were further depressed in vessels from clipped animals. Vascular O2.-, as measured by lucigenin chemiluminescence, was higher in ecSOD-/- compared with ecSOD+/+ mice and was increased by clipping. The antioxidant tiron normalized relaxations in vessels from sham-operated and clipped ecSOD-/-, as well as from clipped ecSOD+/+ mice. In contrast, in vivo application of ecSOD selectively enhanced endothelium-dependent relaxation in vessels from ecSOD-/- mice. These data reveal that endogenous ecSOD is a major antagonistic principle to vascular O2.-, controlling blood pressure and vascular function in angiotensin II-dependent models of hypertension. ecSOD is expressed in such an abundance that even in situations of high oxidative stress no relative lack of enzyme activity occurs

    Nox4 maintains blood pressure during low sodium diet.

    No full text
    The NADPH oxidase Nox4 is a hydrogen peroxide (H2 O2)-producing enzyme, with the highest expression in the kidney. As the kidney is involved in volume and blood pressure control through sodium handling, we set out to determine the impact of a low sodium diet on these parameters in WT and Nox4-/-mice. Nox4 expression in the murine kidney was restricted to the proximal tubule. Nevertheless, low-sodium-induced weight loss and sodium sparing function was similar in WT and Nox4-/-mice, disputing an important function of renal Nox4 in sodium handling. In contrast, a low sodium diet resulted in a reduction in systolic blood pressure in Nox4-/-as compared to WT mice. This was associated with a selectively lower pressure to heart-rate ratio, as well as heart to body weight ratio. In general, a low sodium diet leads to activation of sympathetic tone and the renin angiotensin system, which subsequently increases peripheral resistance. Our observations suggest that the control by this system is attenuated in Nox4-/-mice, resulting in lower blood pressure in response to low sodium

    Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet.

    No full text
    Hyperlipidemia enhances xanthine oxidase (XO) activity. XO is an important source of reactive oxygen species (ROS). Since ROS are thought to promote atherosclerosis, we hypothesized that XO is involved in the development of atherosclerosis. ApoE(-/-) mice were fed a Western-type (WD) or control diet. In subgroups, tungsten (700 mg/L) was administered to inhibit XO. XO is a secreted enzyme which is formed in the liver as xanthine dehydrogenase (XDH) and binds to the vascular endothelium. High expression of XDH was found in the liver and WD increased liver XDH mRNA and XDH protein expression. WD induced the conversion of XDH to the radical-forming XO. Moreover, WD increased the hepatic expression of CD40, demonstrating activation of hepatic cells. Aortic tissue of ApoE(-/-) mice fed a WD for 6 months exhibited marked atherosclerosis, attenuated endothelium-dependent relaxation to acetylcholine, increased vascular oxidative stress, and mRNA expression of the chemokine KC. Tungsten treatment had no effect on plasma lipids but lowered the plasma XO activity. In animals fed a control diet, tungsten had no effect on radical formation, endothelial function, or atherosclerosis development. In mice fed a WD, however tungsten attenuated the vascular superoxide anion formation, prevented endothelial dysfunction, and attenuated KC mRNA expression. Most importantly, tungsten treatment largely prevented the development of atherosclerosis in the aorta of ApoE(-/-) mice on WD. Therefore, tungsten, potentially via the inhibition of XO, prevents the development of endothelial dysfunction and atherosclerosis in ApoE(-/-) mice on W

    The polarity protein Scrib is essential for directed endothelial cell migration

    No full text
    RATIONALE: Polarity proteins are involved in the apico-basal orientation of epithelial cells, but relatively little is known regarding their function in mesenchymal cells. OBJECTIVE: We hypothesized that polarity proteins also contribute to endothelial processes like angiogenesis. METHODS AND RESULTS: Screening of endothelial cells revealed high expression of the polarity protein Scribble (Scrib). On fibronectin-coated carriers Scrib siRNA (siScrib) blocked directed but not random migration of human umbilical vein endothelial cells and led to an increased number and disturbed orientation of cellular lamellipodia. Coimmunoprecipitation/mass spectrometry and glutathione S-transferase (GST) pulldown assays identified integrin α5 as a novel Scrib interacting protein. By total internal reflection fluorescence (TIRF) microscopy, Scrib and integrin α5 colocalize at the basal plasma membrane of endothelial cells. Western blot and fluorescence activated cell sorting (FACS) analysis revealed that silencing of Scrib reduced the protein amount and surface expression of integrin α5 whereas surface expression of integrin αV was unaffected. Moreover, in contrast to fibronectin, the ligand of integrin α5, directional migration on collagen mediated by collagen-binding integrins was unaffected by siScrib. Mechanistically, Scrib supported integrin α5 recycling and protein stability by blocking its interaction with Rab7a, its translocation into lysosomes, and its subsequent degradation by pepstatin-sensitive proteases. In siScrib-treated cells, reinduction of the wild-type protein but not of PSD95, Dlg, ZO-1 (PDZ), or leucine rich repeat domain mutants restored integrin α5 abundance and directional cell migration. The downregulation of Scrib function in Tg(kdrl:EGFP)(s843) transgenic zebrafish embryos delayed the angiogenesis of intersegmental vessels. CONCLUSIONS: Scrib is a novel regulator of integrin α5 turnover and sorting, which is required for oriented cell migration and sprouting angiogenesis

    Long noncoding RNA lISPR1 is required for S1P signaling and endothelial cell function

    No full text
    Sphingosine-1-Phosphate (S1P) is a potent signaling lipid. The effects of S1P are mediated by the five S1P receptors (S1PR). In the endothelium S1PR1 is the predominant receptor and thus S1PR1 abundance limits S1P signaling. Recently, lncRNAs were identified as a novel class of molecules regulating gene expression. Interestingly, the lncRNA NONHSAT004848 (LISPR1, Long intergenic noncoding RNA antisense to S1PR1), is closely positioned to the S1P1 receptors gene and in part shares its promoter region. We hypothesize that LISPR1 controls endothelial S1PR1 expression and thus S1P-induced signaling in endothelial cells. In vitro transcription and translation as well as coding potential assessment showed that LISPR1 is indeed noncoding. LISPR1 was localized in both cytoplasm and nucleus and harbored a PolyA tail at the 3'end. In human umbilical vein endothelial cells, as well as human lung tissue, qRT-PCR and RNA-Seq revealed high expression of LISPR1. S1PR1 and LISPR1 were downregulated in human pulmonary diseases such as COPD. LISPR1 but also S1PR1 were induced by inflammation, shear stress and statins. Knockdown of LISPR1 attenuated endothelial S1P-induced migration and spheroid outgrowth of endothelial cells. LISPR1 knockdown decreased S1PR1 expression, which was paralleled by an increase of the binding of the transcriptional repressor ZNF354C to the S1PR1 promoter and a reduction of the recruitment of RNA Polymerase II to the S1PR1 5'end. This resulted in attenuated S1PR1 expression and attenuated S1P downstream signaling. Collectively, the disease relevant lncRNA LISPR1 acts as a novel regulatory unit important for S1PR1 expression and endothelial cell function
    corecore