33 research outputs found
Reproductive abnormalities in mice expressing omega-3 fatty acid desaturase in their mammary glands
The Caenorhabditis elegans n-3 fatty acid desaturase (Fat-1) acts on a range of 18- and 20-carbon n-6 fatty acid substrates. Transgenic female mice expressing the Fat-1 gene under transcriptional control of the goat β-casein promoter produce milk phospholipids having elevated levels of n-3 polyunsaturated fatty acids (PUFA). However, females from this line were also observed to have impaired reproductive performance characterized by a smaller litter size (2.7 ± 0.6 vs. 7.2 ± 0.7; P < 0.05) than wildtype controls. While there is a close association between PUFA metabolism, prostaglandin biosynthesis, and fertility; reproductive problems in these mice were unanticipated given that the Fat-1 transgene is primarily expressed in the lactating mammary gland. Using multiple approaches it was found that Fat-1 mice have normal ovulation and fertilization rates; however fewer embryos were present in the uterus prior to implantation. Small litter size was also found to be partly attributable to a high incidence of post-implantation fetal resorptions. Embryo transfer experiments revealed that embryos developing from oocytes derived from transgenic ovaries had an increased rate of post-implantation resorption, regardless of the uterine genotype. Ovary transplantation between Fat-1 and C57BL/6 wildtype females revealed that non-ovarian factors also contributed to the smaller litter size phenotype. Finally, surgical removal of the mammary glands from juvenile Fat-1 mice increased the subsequent number of implantation sites per female, but did not lessen the high rate of post-implantation resorptions. In conclusion, we herein report on a system where an exogenous transgene expressed predominately in the mammary gland detrimentally affects female reproduction, suggesting that in certain circumstances the mammary gland may function as an endocrine regulator of reproductive performance
Genomic and Epigenomic Responses to Chronic Stress Involve miRNA-Mediated Programming
Stress represents a critical influence on motor system function and has been shown to impair movement performance. We hypothesized that stress-induced motor impairments are due to brain-specific changes in miRNA and protein-encoding gene expression. Here we show a causal link between stress-induced motor impairment and associated genetic and epigenetic responses in relevant central motor areas in a rat model. Exposure to two weeks of mild restraint stress altered the expression of 39 genes and nine miRNAs in the cerebellum. In line with persistent behavioural impairments, some changes in gene and miRNA expression were resistant to recovery from stress. Interestingly, stress up-regulated the expression of Adipoq and prolactin receptor mRNAs in the cerebellum. Stress also altered the expression of Prlr, miR-186, and miR-709 in hippocampus and prefrontal cortex. In addition, our findings demonstrate that miR-186 targets the gene Eps15. Furthermore, we found an age-dependent increase in EphrinB3 and GabaA4 receptors. These data show that even mild stress results in substantial genomic and epigenomic changes involving miRNA expression and associated gene targets in the motor system. These findings suggest a central role of miRNA-regulated gene expression in the stress response and in associated neurological function
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations
The ExoClock project has been created with the aim of increasing the
efficiency of the Ariel mission. It will achieve this by continuously
monitoring and updating the ephemerides of Ariel candidates over an extended
period, in order to produce a consistent catalogue of reliable and precise
ephemerides. This work presents a homogenous catalogue of updated ephemerides
for 450 planets, generated by the integration of 18000 data points from
multiple sources. These sources include observations from ground-based
telescopes (ExoClock network and ETD), mid-time values from the literature and
light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we
manage to collect observations for half of the post-discovery years (median),
with data that have a median uncertainty less than one minute. In comparison
with literature, the ephemerides generated by the project are more precise and
less biased. More than 40\% of the initial literature ephemerides had to be
updated to reach the goals of the project, as they were either of low precision
or drifting. Moreover, the integrated approach of the project enables both the
monitoring of the majority of the Ariel candidates (95\%), and also the
identification of missing data. The dedicated ExoClock network effectively
supports this task by contributing additional observations when a gap in the
data is identified. These results highlight the need for continuous monitoring
to increase the observing coverage of the candidate planets. Finally, the
extended observing coverage of planets allows us to detect trends (TTVs -
Transit Timing Variations) for a sample of 19 planets. All products, data, and
codes used in this work are open and accessible to the wider scientific
community.Comment: Recommended for publication to ApJS (reviewer's comments
implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data
available at http://doi.org/10.17605/OSF.IO/P298
Recommended from our members
ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations
The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community
Vacuum Packaging Can Extend Fresh Color Characteristics of Beef Steaks during Simulated Display Conditions
Packaging technology is evolving, and the objectives of this study were to evaluate instrumental surface color, expert color evaluation, and lipid oxidation (TBARS) on beef longissimus lumborum steaks packaged in vacuum-ready packaging (VRF) or polyvinyl chloride (PVC) overwrap packaging. Paired strip loins (Institutional Meat Purchasing Specifications # 180) were cut into 2.54-cm-thick steaks and assigned randomly to one of two packaging treatments, VRF or PVC. Steaks packaged in VRF were lighter in color (p p p p p p p < 0.05) for PVC steaks from day 10 through day 35 of the display. Results from this study suggest that the use of vacuum packaging for beef steaks is plausible for maintaining surface color characteristics during extended display periods