125 research outputs found

    A non Cubic Equation of State for Describing the (p ro T) Properties of Pure Components and Their Mixtures

    Get PDF
    In this work we use a non cubic equation of state proposed by Brandani et al.1 to represent the volumetric properties of three pure fluids (carbon dioxide, n-pentane and toluene) at supercritical or near-critical temperatures and at pressures up to 70 MPa. The pT properties of two binary mixtures (carbon dioxide – n-pentane and carbon dioxide – toluene) are calculated in the same range of temperatures and pressures, using the mixing rules proposed by Brandani et al.1 The calculated densities are in good agreement with the literature experimental values, taking into account the wide range of temperatures and pressures at which experimental data were collected

    CO2 adsorption on different organo-­‐modified SBA-­‐15 silicas: a multidisciplinary study on the effects of basic surface groups

    Get PDF
    Hybrid organic–inorganic SBA-15 silicas functionalized with increasing amounts of amino groups were studied in this work aiming to evaluate the effects of their physico-chemical properties on CO2 capture ability. Three different amino-silane species were used: 3-aminopropyltriethoxysilane (APTS), 3-(2-aminoethyl)- aminopropyltrimethoxysilane (EAPTS) and 3-[2-(2-aminoethyl)aminoethyl] aminopropyltrimethoxysilane (PAPTS). More specifically, samples were prepared by using two methods, following a post-synthesis grafting procedure and a one-pot preparation method. Experimental and computational techniques were used to study the structural and textural properties of the obtained samples and their surface species in relation to the adopted preparation method. For the most reactive samples, additional hints on the interactions of organosilane species with the silica surface were obtained by a combination of IR and SS-NMR spectroscopy, with particular emphasis on the effects of the silane chain length on the mobility of the organic species. Advanced complementary solid-state NMR techniques provided deeper information on the interactions of organosilane species with the silica surface. Finally, the amount of CO2 adsorbed was estimated by comparing the classical microcalorimetric analysis method with a new type of screening test, the Zero Length Column analysis, which is able to evaluate small amounts of samples in a very short time and the adsorption properties of the adsorbents. The reactivity of the amino-modified silica samples is deeply influenced by both the preparation route and by the type of organosilane used for the functionalization of the materials. In particular, samples prepared by the post-synthesis grafting procedure and containing higher amount of amino groups in the chain are more reactive, following the order PAPTS 4 EAPTS 4 APTS

    Performance of LoRa-WAN Sensors for Precision Livestock Tracking and Biosensing Applications

    Get PDF
    This study investigated the integration of Long Range Wide Area Network (LoRa WAN) communication technology and sensors for use as Internet of Things (IoT) platform for Precision Livestock-Farming (PLF) applications. The research was conducted at New Mexico State University’s Clayton Livestock Research Centre. The functionality of LoRA WAN communication technology and performance of LoRa WAN motion and GPS sensors were tested using static sensors that were placed either, a) outdoors and at incremental distances from the LoRa WAN gateway antenna (Field, n=6), or b) housed indoors and close to the same LoRa WAN gateway antenna (Indoor, n=5). Accelerometer data, reported as motion intensity index, and GPS location were acquired, transmitted and logged at 1 and 15 minute intervals, respectively. We evaluated the tracker\u27s GPS accuracy (GPSBias as the euclidean distance between the actual and projected tracker location) and variables associated with the tracker’s data transmission capabilities. The results indicate that field trackers had a greater accuracy for remote sensing of GPS locations compared to indoor trackers facing increasing communication interference to acquire satellite signals (GPSBias; 5.20 vs. 17.76 m; P\u3c 0.01). Overall, the trackers and deployments appeared to have a comparable GPS accuracy to other tracking devices and systems available in the market. The total data packets that were successfully transmitted were similar between the indoor and field trackers, but the number of data packets that were processed varied between the two deployments (P=0.02). Due to the static deployment of indoor and field trackers, activity data was almost non-existent for most devices. However, same trackers embedded on collars that were mounted on mature cattle showed clear diurnal patterns consistent with time budgets exerted by grazing cattle. The pilot testing of GPS and accelerometer sensors using LoRa WAN technology revealed reasonable sensor sensitivity and reliability for integration in PLF platforms

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710

    A reference high-pressure CH<sub>4</sub> adsorption isotherm for zeolite Y: results of an interlaboratory study

    Get PDF
    This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess methane adsorption isotherms on NIST Reference Material RM 8850 (Zeolite Y), at 25 °C up to 7.5 MPa. Twenty laboratories participated in the study and contributed over one-hundred adsorption isotherms of methane on Zeolite Y. From these data, an empirical reference equation was determined, along with a 95% uncertainty interval (Uk=2). By requiring participants to replicate a high-pressure reference isotherm for carbon dioxide adsorption on NIST Reference Material RM 8852 (ZSM-5), this interlaboratory study also demonstrated the usefulness of reference isotherms in evaluating the performance of high-pressure adsorption experiments
    • 

    corecore