8,065 research outputs found

    Unified powered flight guidance

    Get PDF
    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document

    Constraints on the distance to SGR 1806-20 from HI absorption

    Full text link
    The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27 had a fluence more than 100 times higher than the only two other SGR flares ever recorded. Whereas the fluence is independent of distance, an estimate for the luminosity of the burst depends on the source's distance, which has previously been argued to be ~15 kpc. The burst produced a bright radio afterglow, against which Cameron et al. (2005) have measured an HI absorption spectrum. This has been used to propose a revised distance to SGR 1806-20 of between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare it both to HI emission data from the Southern Galactic Plane Survey and to archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the distance to SGR 1806-20, but argue that it is difficult to place an upper limit on the distance to SGR 1806-20 from the HI data currently available. The previous value of ~15 kpc thus remains the best estimate of the distance to the source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters, in pres

    Proper Motion of Pulsar B1800-21

    Get PDF
    We report high angular resolution, multi-epoch radio observations of the young pulsar PSR B1800-21. Using two pairs of data sets, each pair spanning approximately a ten year period, we calculate the proper motion of the pulsar. We obtain a proper motion of mu_alpha=11.6 +- 1.8 mas/yr, mu_delta=14.8 +- 2.3 mas/yr, which clearly indicates a birth position at the extreme edge of the W30 supernova remnant. Although this does not definitively rule out an association of W30 and PSR B1800-21, it does not support an association.Comment: 13 pages, 1 color figure. Replaced with version accepted for publication in Astrophysical Journa

    High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    Get PDF
    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    The Distances of SNR W41 and overlapping HII regions

    Full text link
    New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the 13^{13}CO emission spectra of eight small regions on the face of W41, including four HII regions, three non-thermal emission regions and one unclassified region. The maximum velocity of absorption for W41 is 78±\pm2 km/s and the CO cloud at radial velocity 95±\pm5 km/s is behind W41. Because an extended TeV source, a diffuse X-ray enhancement and a large molecular cloud at radial velocity 77±\pm5 km/s are also projected at the center of W41, these yield the kinematic distance of 3.9 to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21 and G23.07+0.25 are at the far kinematic distances (∌\sim9.9 kpc and ∌\sim 10.6 kpc respectively) of their recombination-line velocities (103±\pm0.5 km/s and 89.6±\pm2.1 km/s respectively), G23.07-0.37 is at the near kinematic distance (4.4±\pm0.3 kpc) of its recombination-line velocity (82.7±\pm2.0 km/s), and G23.27-0.27 is probably at the near kinematic distance (4.1±\pm0.3 kpc) of its recombination-line velocity (76.1±\pm0.6 km/s).Comment: 11 pages, 3 figs., 2 tables, accepted by A

    Generating ring currents, solitons, and svortices by stirring a Bose-Einstein condensate in a toroidal trap

    Full text link
    We propose a simple stirring experiment to generate quantized ring currents and solitary excitations in Bose-Einstein condensates in a toroidal trap geometry. Simulations of the 3D Gross-Pitaevskii equation show that pure ring current states can be generated efficiently by adiabatic manipulation of the condensate, which can be realized on experimental time scales. This is illustrated by simulated generation of a ring current with winding number two. While solitons can be generated in quasi-1D tori, we show the even more robust generation of hybrid, solitonic vortices (svortices) in a regime of wider confinement. Svortices are vortices confined to essentially one-dimensional dynamics, which obey a similar phase-offset--velocity relationship as solitons. Marking the transition between solitons and vortices, svortices are a distinct class of symmetry-breaking stationary and uniformly rotating excited solutions of the 2D and 3D Gross-Pitaevskii equation in a toroidal trapping potential. Svortices should be observable in dilute-gas experiments.Comment: 8 pages, 4 figures; accepted for publication in J. Phys. B (Letters

    Directed Explicit Model Checking with HSF-SPIN

    Get PDF
    We present the explicit state model checker HSF-SPIN which is based on the model checker SPIN and its Promela modeling language. HSF-SPIN incorporates directed search algorithms for checking safety and a large class of LTL-specified liveness properties. We start off from the A* algorithm and define heuristics to accelerate the search into the direction of a specified failure situation. Next we propose an improved nested depth-first search algorithm that exploits the structure of Promela Never-Claims. As a result of both improvements, counterexamples will be shorter and the explored part of the state space will be smaller than with classical approaches, allowing to analyze larger state spaces. We evaluate the impact of the new heuristics and algorithms on a set of protocol models, some of which are real-world industrial protocols

    Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    Get PDF
    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

    The Fragmenting Superbubble Associated with the HII Region W4

    Get PDF
    New observations at high latitudes above the HII region W4 show that the structure formerly identified as a chimney candidate, an opening to the Galactic halo, is instead a superbubble in the process of fragmenting and possibly evolving into a chimney. Data at high Galactic latitudes (b > 5 degrees) above the W3/W4 star forming region at 1420 and 408 MHz Stokes I (total power) and 1420 MHz Stokes Q and U (linear polarization) reveal an egg-shaped structure with morphological correlations between our data and the H-alpha data of Dennison, Topasna, & Simonetti. Polarized intensity images show depolarization extending from W4 up the walls of the superbubble, providing strong evidence that the radio continuum is generated by thermal emission coincident with the H-alpha emission regions. We conclude that the parts of the HII region hitherto known as W4 and the newly revealed thermal emission are all ionized by the open cluster OCl 352. Assuming a distance of 2.35 kpc, the ovoid structure is 164 pc wide and extends 246 pc above the mid-plane of the Galaxy. The shell's emission decreases in total-intensity and polarized intensity in various locations, appearing to have a break at its top and another on one side. Using a geometric analysis of the depolarization in the shell's walls, we estimate that a magnetic field line-of-sight component of 3 to 5 uG exists in the shell. We explore the connection between W4 and the Galactic halo, considering whether sufficient radiation can escape from the fragmenting superbubble to ionize the kpc-scale H-alpha loop discovered by Reynolds, Sterling & Haffner.Comment: 42 pages, 14 figures; Accepted for publication in Ap
    • 

    corecore