162 research outputs found

    The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study

    Get PDF
    The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT , and COMPETE 2020 , from ANI – Projetos ID&T Empresas em Copromoção , by the project “insitu.Biomas – Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication” with the reference POCI-01-0247-FEDER-017771 , by the project “Print-on-Organs – Engineering bioinks and processes for direct printing on organs” with the reference POCI-01-0247-FEDER-033877 , and by the project “Bone2Move - Development of ‘in vivo’ experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach” with the reference POCI-01-0145-FEDER-031146 . Mariana Vieira Branquinho ( SFRH/BD/146172/2019 ), Ana Catarina Sousa ( SFRH/BD/146689/2019 ), and Rui Damásio Alvites ( SFRH/BD/116118/2016 ), acknowledge FCT , for financial support. This research was supported by Projects PEst-OE/AGR/UI0211/2011 from FCT, and COMPETE 2020, from ANI ? Projetos ID&T Empresas em Copromo??o, by the project ?insitu.Biomas ? Reinvent biomanufacturing systems by using an usability approach for in situ clinic temporary implants fabrication? with the reference POCI-01-0247-FEDER-017771, by the project ?Print-on-Organs ? Engineering bioinks and processes for direct printing on organs? with the reference POCI-01-0247-FEDER-033877, and by the project ?Bone2Move - Development of ?in vivo? experimental techniques and modelling methodologies for the evaluation of 4D scaffolds for bone defect in sheep model: an integrative research approach? with the reference POCI-01-0145-FEDER-031146. Mariana Vieira Branquinho (SFRH/BD/146172/2019), Ana Catarina Sousa (SFRH/BD/146689/2019), and Rui Dam?sio Alvites (SFRH/BD/116118/2016), acknowledge FCT, for financial support

    High-Throughput Analysis of Synthetic Peptides for the Immunodiagnosis of Canine Visceral Leishmaniasis

    Get PDF
    Globally, the number of new human cases of visceral leishmaniasis (VL) is estimated to be approximately 500,000 per year. This is the most severe of all forms of leishmaniasis, and the zoonotic form of VL, caused by Leishmania infantum (also known as Leishmania chagasi), represents 20% of human visceral leishmaniasis worldwide; additionally, its prevalence is increasing in urban and peri-urban areas of the tropics. In Brazil, the identification and elimination of infected dogs, which act as a reservoir for Leishmania parasites, is a control measure employed in addition to the use of insecticides against the vectors and the identification and treatment of infected humans. Currently, the diagnostic methods employed to identify infected animals are not able to detect all of these dogs, which compromises the effectiveness of control measures. Moreover, one of the most important issues in controlling VL is the difficulty of diagnosing asymptomatic dogs, which act as parasite reservoirs. Therefore, to contribute to the improvement of the diagnostic methods for CVL, we aimed to identify and characterize new antigens that were more sensitive and specific and could be applied in epidemiologic surveys
    corecore