6 research outputs found

    Metatranscriptome of human faecal microbial communities in a cohort of adult men

    Get PDF
    The gut microbiome is intimately related to human health, but it is not yet known which functional activities are driven by specific microorganisms\u27 ecological configurations or transcription. We report a large-scale investigation of 372 human faecal metatranscriptomes and 929 metagenomes from a subset of 308 men in the Health Professionals Follow-Up Study. We identified a metatranscriptomic \u27core\u27 universally transcribed over time and across participants, often by different microorganisms. In contrast to the housekeeping functions enriched in this core, a \u27variable\u27 metatranscriptome included specialized pathways that were differentially expressed both across participants and among microorganisms. Finally, longitudinal metagenomic profiles allowed ecological interaction network reconstruction, which remained stable over the six-month timespan, as did strain tracking within and between participants. These results provide an initial characterization of human faecal microbial ecology into core, subject-specific, microorganism-specific and temporally variable transcription, and they differentiate metagenomically versus metatranscriptomically informative aspects of the human faecal microbiome

    The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men

    Get PDF
    INTRODUCTION: We recently described the sulfur microbial diet, a pattern of intake associated with increased gut sulfur-metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk differed by CRC molecular subtypes or presence of intratumoral microbes involved in CRC pathogenesis (Fusobacterium nucleatum and Bifidobacterium spp.). METHODS: We performed Cox proportional hazards modeling to examine the association between the sulfur microbial diet and incidence of overall and distal CRC by molecular and microbial subtype in the Health Professionals Follow-Up Study (1986-2012). RESULTS: We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had available tissue data. After accounting for multiple hypothesis testing, the relationship between the sulfur microbial diet and CRC incidence did not differ by subtype. However, there was a suggestion of an association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99-1.74, Ptrend = 0.07, Pheterogeneity = 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet with distal CRC seemed to differ by the presence of intratumoral Bifidobacterium spp. with an adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.65 (95% confidence interval: 1.14-2.39, Ptrend = 0.01, Pheterogeneity = 0.03) for Bifidobacterium-negative distal CRC. We observed no apparent heterogeneity by other tested molecular markers. DISCUSSION: Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the role of gut microbial sulfur metabolism and CRC

    Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men

    Get PDF
    Background & Aims: Sulfur-metabolizing microbes, which convert dietary sources of sulfur into genotoxic hydrogen sulfide (H2S), have been associated with development of colorectal cancer (CRC). We identified a dietary pattern associated with sulfur-metabolizing bacteria in stool and then investigated its association with risk of incident CRC using data from a large prospective study of men. Methods: We collected data from 51,529 men enrolled in the Health Professionals Follow-up Study since 1986 to determine the association between sulfur-metabolizing bacteria in stool and risk of CRC over 26 years of follow-up. First, in a subcohort of 307 healthy men, we profiled serial stool metagenomes and metatranscriptomes and assessed diet using semiquantitative food frequency questionnaires to identify food groups associated with 43 bacterial species involved in sulfur metabolism. We used these data to develop a sulfur microbial dietary score. We then used Cox proportional hazards modeling to evaluate adherence to this pattern among eligible individuals (n = 48,246) from 1986 through 2012 with risk for incident CRC. Results: Foods associated with higher sulfur microbial diet scores included increased consumption of processed meats and low-calorie drinks and lower consumption of vegetables and legumes. Increased sulfur microbial diet scores were associated with risk of distal colon and rectal cancers, after adjusting for other risk factors (multivariable relative risk, highest vs lowest quartile, 1.43; 95% confidence interval 1.14–1.81; P-trend = .002). In contrast, sulfur microbial diet scores were not associated with risk of proximal colon cancer (multivariable relative risk 0.86; 95% CI 0.65–1.14; P-trend = .31). Conclusions: In an analysis of participants in the Health Professionals Follow-up Study, we found that long-term adherence to a dietary pattern associated with sulfur-metabolizing bacteria in stool was associated with an increased risk of distal CRC. Further studies are needed to determine how sulfur-metabolizing bacteria might contribute to CRC pathogenesis

    Metatranscriptome of human faecal microbial communities in a cohort of adult men

    No full text
    The gut microbiome is intimately related to human health, but it is not yet known which functional activities are driven by specific microorganisms\u27 ecological configurations or transcription. We report a large-scale investigation of 372 human faecal metatranscriptomes and 929 metagenomes from a subset of 308 men in the Health Professionals Follow-Up Study. We identified a metatranscriptomic \u27core\u27 universally transcribed over time and across participants, often by different microorganisms. In contrast to the housekeeping functions enriched in this core, a \u27variable\u27 metatranscriptome included specialized pathways that were differentially expressed both across participants and among microorganisms. Finally, longitudinal metagenomic profiles allowed ecological interaction network reconstruction, which remained stable over the six-month timespan, as did strain tracking within and between participants. These results provide an initial characterization of human faecal microbial ecology into core, subject-specific, microorganism-specific and temporally variable transcription, and they differentiate metagenomically versus metatranscriptomically informative aspects of the human faecal microbiome

    Association Between Sulfur-Metabolizing Bacterial Communities in Stool and Risk of Distal Colorectal Cancer in Men

    Get PDF
    Background & Aims: Sulfur-metabolizing microbes, which convert dietary sources of sulfur into genotoxic hydrogen sulfide (H2S), have been associated with development of colorectal cancer (CRC). We identified a dietary pattern associated with sulfur-metabolizing bacteria in stool and then investigated its association with risk of incident CRC using data from a large prospective study of men. Methods: We collected data from 51,529 men enrolled in the Health Professionals Follow-up Study since 1986 to determine the association between sulfur-metabolizing bacteria in stool and risk of CRC over 26 years of follow-up. First, in a subcohort of 307 healthy men, we profiled serial stool metagenomes and metatranscriptomes and assessed diet using semiquantitative food frequency questionnaires to identify food groups associated with 43 bacterial species involved in sulfur metabolism. We used these data to develop a sulfur microbial dietary score. We then used Cox proportional hazards modeling to evaluate adherence to this pattern among eligible individuals (n = 48,246) from 1986 through 2012 with risk for incident CRC. Results: Foods associated with higher sulfur microbial diet scores included increased consumption of processed meats and low-calorie drinks and lower consumption of vegetables and legumes. Increased sulfur microbial diet scores were associated with risk of distal colon and rectal cancers, after adjusting for other risk factors (multivariable relative risk, highest vs lowest quartile, 1.43; 95% confidence interval 1.14–1.81; P-trend = .002). In contrast, sulfur microbial diet scores were not associated with risk of proximal colon cancer (multivariable relative risk 0.86; 95% CI 0.65–1.14; P-trend = .31). Conclusions: In an analysis of participants in the Health Professionals Follow-up Study, we found that long-term adherence to a dietary pattern associated with sulfur-metabolizing bacteria in stool was associated with an increased risk of distal CRC. Further studies are needed to determine how sulfur-metabolizing bacteria might contribute to CRC pathogenesis
    corecore