10 research outputs found

    Mucospheres produced by a mixotrophic protist impact ocean carbon cycling

    Get PDF
    Mixotrophic protists (unicellular eukaryotes) that engage in both phototrophy (photosynthesis) and phago-heterotrophy (engulfment of particles)-are predicted to contribute substantially to energy fluxes and marine biogeochemical cycles. However, their impact remains largely unquantified. Here we describe the sophisticated foraging strategy of a widespread mixotrophic dinoflagellate, involving the production of carbon-rich 'mucospheres' that attract, capture, and immobilise microbial prey facilitating their consumption. We provide a detailed characterisation of this previously undescribed behaviour and reveal that it represents an overlooked, yet quantitatively significant mechanism for oceanic carbon fluxes. Following feeding, the mucospheres laden with surplus prey are discarded and sink, contributing an estimated 0.17-1.24 mg m-2 d-1 of particulate organic carbon, or 0.02-0.15 Gt to the biological pump annually, which represents 0.1-0.7% of the estimated total export from the euphotic zone. These findings demonstrate how the complex foraging behaviour of a single species of mixotrophic protist can disproportionally contribute to the vertical flux of carbon in the ocean

    The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in O’Brien, J., McParland, E. L., Bramucci, A. R., Ostrowski, M., Siboni, N., Ingleton, T., Brown, M. V., Levine, N. M., Laverock, B., Petrou, K., & Seymour, J. The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters. Frontiers in Microbiology, 13, (2022): 894026, https://doi.org/10.3389/fmicb.2022.894026.The organic sulfur compounds dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) play major roles in the marine microbial food web and have substantial climatic importance as sources and sinks of dimethyl sulfide (DMS). Seasonal shifts in the abundance and diversity of the phytoplankton and bacteria that cycle DMSP are likely to impact marine DMS (O) (P) concentrations, but the dynamic nature of these microbial interactions is still poorly resolved. Here, we examined the relationships between microbial community dynamics with DMS (O) (P) concentrations during a 2-year oceanographic time series conducted on the east Australian coast. Heterogenous temporal patterns were apparent in chlorophyll a (chl a) and DMSP concentrations, but the relationship between these parameters varied over time, suggesting the phytoplankton and bacterial community composition were affecting the net DMSP concentrations through differential DMSP production and degradation. Significant increases in DMSP were regularly measured in spring blooms dominated by predicted high DMSP-producing lineages of phytoplankton (Heterocapsa, Prorocentrum, Alexandrium, and Micromonas), while spring blooms that were dominated by predicted low DMSP-producing phytoplankton (Thalassiosira) demonstrated negligible increases in DMSP concentrations. During elevated DMSP concentrations, a significant increase in the relative abundance of the key copiotrophic bacterial lineage Rhodobacterales was accompanied by a three-fold increase in the gene, encoding the first step of DMSP demethylation (dmdA). Significant temporal shifts in DMS concentrations were measured and were significantly correlated with both fractions (0.2–2 μm and >2 μm) of microbial DMSP lyase activity. Seasonal increases of the bacterial DMSP biosynthesis gene (dsyB) and the bacterial DMS oxidation gene (tmm) occurred during the spring-summer and coincided with peaks in DMSP and DMSO concentration, respectively. These findings, along with significant positive relationships between dsyB gene abundance and DMSP, and tmm gene abundance with DMSO, reinforce the significant role planktonic bacteria play in producing DMSP and DMSO in ocean surface waters. Our results highlight the highly dynamic nature and myriad of microbial interactions that govern sulfur cycling in coastal shelf waters and further underpin the importance of microbial ecology in mediating important marine biogeochemical processes.This research was supported by the Australian Research Council Grants FT130100218 and DP180100838 awarded to JS and DP140101045 awarded to JS and KP, as well as an Australian Government Research Training Program Scholarship awarded to JO’B

    Biogeographical and seasonal dynamics of the marine Roseobacter community and ecological links to DMSP-producing phytoplankton

    Get PDF
    Abstract Ecological interactions between marine bacteria and phytoplankton play a pivotal role in governing the ocean’s major biogeochemical cycles. Among these, members of the marine Roseobacter Group (MRG) can establish mutualistic relationships with phytoplankton that are, in part, maintained by exchanges of the organosulfur compound, dimethylsulfoniopropionate (DMSP). Yet most of what is known about these interactions has been derived from culture-based laboratory studies. To investigate temporal and spatial co-occurrence patterns between members of the MRG and DMSP-producing phytoplankton we analysed 16S and 18S rRNA gene amplicon sequence variants (ASVs) derived from 5 years of monthly samples from seven environmentally distinct Australian oceanographic time-series. The MRG and DMSP-producer communities often displayed contemporaneous seasonality, which was greater in subtropical and temperate environments compared to tropical environments. The relative abundance of both groups varied latitudinally, displaying a poleward increase, peaking (MRG at 33% of total bacteria, DMSP producers at 42% of eukaryotic phototrophs) during recurrent spring-summer phytoplankton blooms in the most temperate site (Maria Island, Tasmania). Network analysis identified 20,140 significant positive correlations between MRG ASVs and DMSP producers and revealed that MRGs exhibit significantly stronger correlations to high DMSP producers relative to other DMSP-degrading bacteria (Pelagibacter, SAR86 and Actinobacteria). By utilising the power of a continental network of oceanographic time-series, this study provides in situ confirmation of interactions found in laboratory studies and demonstrates that the ecological dynamics of an important group of marine bacteria are shaped by the production of an abundant and biogeochemically significant organosulfur compound

    Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors

    Get PDF
    18 pages, 5 figures.-- This is an open access article under the terms of the Creative Commons Attribution LicenseWe investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71–99°E, summer) and Pacific (170–174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modellingThis work was funded by a CSIRO Office of the Chief Executive Science Leader Fellowship (R-04202) to L.B. as well as the Antarctic Science International Bursary 2017 to S.L.S.S.Peer reviewe

    Latitudinal Dynamics of Vibrio along the Eastern Coastline of Australia

    No full text
    The marine genus of bacteria, Vibrio, includes several significant human and animal pathogens, highlighting the importance of defining the factors that govern their occurrence in the environment. To determine what controls large-scale spatial patterns among this genus, we examined the abundance and diversity of Vibrio communities along a 4000 km latitudinal gradient spanning the Australian coast. We used a Vibrio-specific amplicon sequencing assay to define Vibrio community diversity, as well as quantitative PCR and digital droplet PCR to identify patterns in the abundances of the human pathogens V. cholera, V. parahaemolyticus and V. vulnificus. The hsp60 amplicon sequencing analysis revealed significant differences in the composition of tropical and temperate Vibrio communities. Over 50% of Vibrio species detected, including the human pathogens V. parahaemolyticus and V. vulnificus, displayed significant correlations with either temperature, salinity, or both, as well as different species of phytoplankton. High levels of V. parahaemolyticus and V. vulnificus were detected in the tropical site at Darwin and the subtropical Gold Coast site, along with high levels of V. parahaemolyticus at the subtropical Sydney site. This study has revealed the key ecological determinants and latitudinal patterns in the abundance and diversity of coastal Vibrio communities, including insights into the distribution of human pathogens, within a region experiencing significant ecological shifts due to climate change

    Policlinico Umberto I. Piano di ristrutturazione del sistema urbanistico ed edilizio del Policlinico Umberto I.

    No full text
    Il Piano per la ristrutturazione, la riqualificazione e la riorganizzazione strutturale del Policlinico è il risultato di una sfida che il Dipartimento Itaca ha accettato e condiviso con la Direzione dell'Azienda. Una sfida che abbiamo voluto raccogliere per impegno civico oltre che per interessi disciplinari; per un senso di responsabilità che ci ha spinto a lavorare per modificare le attuali condizioni dell'organizzazione urbana, edilizia ed ambientale del Policlinico. Una sfida mirata a valorizzare il tanto che questo pezzo di città è in grado di esprimere ripristinando quelle condizioni di qualità dello spazio urbano e ambientale di cui ormai si percepiscono solo frammenti e proponendo nuovi assetti architettonici, compatibili con le esigenze poste dalle specificità funzionali a cui questo comparto è destinato oggi e nei futuri scenari.The plan for the restructuring, upgrading and structural reorganization of the General Hospital is the result of a challenge that the Department Ithaca has accepted and agreed with the Management Company. A challenge that we wanted to collect for civic engagement as well as disciplinary interests, a sense of responsibility that has led us to work to change the current conditions of urban organization, construction and environmental Polyclinic. A challenge aimed at enhancing the extent that this part of the city is able to express terms of restoring the quality of urban space and the environment to which we now perceive only fragments and proposing new architectural structure, compatible with the requirements posed by the functional specificity that this fund is likely today and in the future scenarios
    corecore