1,606 research outputs found

    Tightness for a family of recursion equations

    Full text link
    In this paper we study the tightness of solutions for a family of recursion equations. These equations arise naturally in the study of random walks on tree-like structures. Examples include the maximal displacement of a branching random walk in one dimension and the cover time of a symmetric simple random walk on regular binary trees. Recursion equations associated with the distribution functions of these quantities have been used to establish weak laws of large numbers. Here, we use these recursion equations to establish the tightness of the corresponding sequences of distribution functions after appropriate centering. We phrase our results in a fairly general context, which we hope will facilitate their application in other settings.Comment: Published in at http://dx.doi.org/10.1214/08-AOP414 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Dynamical Properties of Interaction Data

    Get PDF
    Network dynamics are typically presented as a time series of network properties captured at each period. The current approach examines the dynamical properties of transmission via novel measures on an integrated, temporally extended network representation of interaction data across time. Because it encodes time and interactions as network connections, static network measures can be applied to this "temporal web" to reveal features of the dynamics themselves. Here we provide the technical details and apply it to agent-based implementations of the well-known SEIR and SEIS epidemiological models.Comment: 29 pages, 15 figure

    Benchmarking Measures of Network Influence

    Get PDF
    Identifying key agents for the transmission of diseases (ideas, technology, etc.) across social networks has predominantly relied on measures of centrality on a static base network or a temporally flattened graph of agent interactions. Various measures have been proposed as the best trackers of influence, such as degree centrality, betweenness, and kk-shell, depending on the structure of the connectivity. We consider SIR and SIS propagation dynamics on a temporally-extruded network of observed interactions and measure the conditional marginal spread as the change in the magnitude of the infection given the removal of each agent at each time: its temporal knockout (TKO) score. We argue that the exhaustive approach of the TKO score makes it an effective benchmark measure for evaluating the accuracy of other, often more practical, measures of influence. We find that none of the common network measures applied to the induced flat graphs are accurate predictors of network propagation influence on the systems studied; however, temporal networks and the TKO measure provide the requisite targets for the hunt for effective predictive measures

    Exclusion processes in higher dimensions: Stationary measures and convergence

    Full text link
    There has been significant progress recently in our understanding of the stationary measures of the exclusion process on ZZ. The corresponding situation in higher dimensions remains largely a mystery. In this paper we give necessary and sufficient conditions for a product measure to be stationary for the exclusion process on an arbitrary set, and apply this result to find examples on ZdZ^d and on homogeneous trees in which product measures are stationary even when they are neither homogeneous nor reversible. We then begin the task of narrowing down the possibilities for existence of other stationary measures for the process on ZdZ^d. In particular, we study stationary measures that are invariant under translations in all directions orthogonal to a fixed nonzero vector. We then prove a number of convergence results as t→∞t\to\infty for the measure of the exclusion process. Under appropriate initial conditions, we show convergence of such measures to the above stationary measures. We also employ hydrodynamics to provide further examples of convergence.Comment: Published at http://dx.doi.org/10.1214/009117905000000341 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore