158 research outputs found

    Multi-Regge kinematics and the moduli space of Riemann spheres with marked points

    Get PDF
    We show that scattering amplitudes in planar N = 4 Super Yang-Mills in multi-Regge kinematics can naturally be expressed in terms of single-valued iterated integrals on the moduli space of Riemann spheres with marked points. As a consequence, scattering amplitudes in this limit can be expressed as convolutions that can easily be computed using Stokes' theorem. We apply this framework to MHV amplitudes to leading-logarithmic accuracy (LLA), and we prove that at L loops all MHV amplitudes are determined by amplitudes with up to L + 4 external legs. We also investigate non-MHV amplitudes, and we show that they can be obtained by convoluting the MHV results with a certain helicity flip kernel. We classify all leading singularities that appear at LLA in the Regge limit for arbitrary helicity configurations and any number of external legs. Finally, we use our new framework to obtain explicit analytic results at LLA for all MHV amplitudes up to five loops and all non-MHV amplitudes with up to eight external legs and four loops.Comment: 104 pages, six awesome figures and ancillary files containing the results in Mathematica forma

    Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic aneurysm and post-EVAR sac volume

    Get PDF
    BACKGROUND AND AIMS: Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS: In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS: The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS: The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.</p

    Targeted proteomics and metabolomics for biomarker discovery in abdominal aortic aneurysm and post-EVAR sac volume

    Get PDF
    BACKGROUND AND AIMS: Abdominal aortic aneurysm (AAA) patients undergo uniform surveillance programs both leading up to, and following surgery. Circulating biomarkers could play a pivotal role in individualizing surveillance. We applied a multi-omics approach to identify relevant biomarkers and gain pathophysiological insights. MATERIALS AND METHODS: In this cross-sectional study, 108 AAA patients and 200 post-endovascular aneurysm repair (post-EVAR) patients were separately investigated. We performed partial least squares regression and ingenuity pathway analysis on circulating concentrations of 96 proteins (92 Olink Cardiovascular-III panel, 4 ELISA-assays) and 199 metabolites (measured by LC-TQMS), and their associations with CT-based AAA/sac volume. RESULTS: The median (25th-75th percentile) maximal diameter was 50.0 mm (46.0, 53.0) in the AAA group, and 55.4 mm (45.0, 64.2) in the post-EVAR group. Correcting for clinical characteristics in AAA patients, the aneurysm volume Z-score differed 0.068 (95 %CI: (0.042, 0.093)), 0.066 (0.047, 0.085) and -0.051 (-0.064, -0.038) per Z-score valine, leucine and uPA, respectively. After correcting for clinical characteristics and orthogonalization in the post-EVAR group, the sac volume Z-score differed 0.049 (0.034, 0.063) per Z-score TIMP-4, -0.050 (-0.064, -0.037) per Z-score LDL-receptor, -0.051 (-0.062, -0.040) per Z-score 1-OG/2-OG and -0.056 (-0.066, -0.045) per Z-score 1-LG/2-LG. CONCLUSIONS: The branched-chain amino acids and uPA were related to AAA volume. For post-EVAR patients, LDL-receptor, monoacylglycerols and TIMP-4 are potential biomarkers for sac volume. Additionally, distinct markers for sac change were identified.</p

    The effects of over-expression of the FK506-binding protein FKBP12.6 on K+ currents in adult rabbit ventricular myocytes

    Get PDF
    This study examines the effects of the intracellular protein FKBP12.6 on action potential and associated K+ currents in isolated adult rabbit ventricular cardiomyocytes. FKBP12.6 was over-expressed by ~6 times using a recombinant adenovirus coding for human FKBP12.6. This over-expression caused prolongation of action potential duration (APD) by ~30%. The amplitude of the transient outward current (Ito) was unchanged, but rate of inactivation at potentials positive to +40 mV was increased. FKBP12.6 over-expression decreased the amplitude of the inward rectifier current (IK1) by ~25% in the voltage range −70 to −30 mV, an effect prevented by FK506 or lowering intracellular [Ca2+] below 1 nM. Over-expression of an FKBP12.6 mutant, which cannot bind calcineurin, prolonged APD and affected Ito and IK1 in a similar manner to wild-type protein. These data suggest that FKBP12.6 can modulate APD via changes in IK1 independently of calcineurin binding, suggesting that FKBP12.6 may affect APD by direct interaction with IK1

    Targeted plasma multi-omics propose glutathione, glycine and serine as biomarkers for abdominal aortic aneurysm growth on serial CT scanning

    Get PDF
    Background and aims: Abdominal aortic aneurysm (AAA) patients undergo uniform imaging surveillance until reaching the surgical threshold. In spite of the ongoing exploration of AAA pathophysiology, biomarkers for personalized surveillance are lacking. This study aims to identify potential circulating biomarkers for AAA growth on serial CT scans. Methods: Patients with an AAA (maximal diameter ≥40 mm) were included in this multicentre, prospective cohort study. Participants underwent baseline blood sampling and yearly CT-imaging to determine AAA diameter and volume. Proteins and metabolites were measured using proximity extension assay (Olink Cardiovascular III) or separate ELISA panels, and mass-spectrometry (LC-TQMS), respectively. Linear mixed-effects, orthogonal partial least squares, and Cox regression were used to explore biomarker associations with AAA volume growth rate and the risk of surpassing the surgical threshold, as formulated by current guidelines. Results: 271 biomarkers (95 proteins, 176 metabolites) were measured in 109 (90.8 % male) patients with mean age 72. Median baseline maximal AAA diameter was 47.8 mm, volume 109 mL. Mean annual AAA volume growth rate was 11.5 %, 95 % confidence interval (CI) (10.4, 12.7). Median follow-up time was 23.2 months, 49 patients reached the surgical threshold. Patients with one standard deviation (SD) higher glutathione and glycine levels at baseline had an AAA volume growth rate that respectively was 1.97 %, 95%CI (0.97, 2.97) and 1.74 %, 95%CI (0.78, 2.71) larger, relative to the actual aneurysm size. Serine was associated with the risk of reaching the surgical threshold, independent of age and baseline AAA size (cause-specific hazard ratio per SD difference 1.78, 95%CI (1.30, 2.44)). Conclusions: Among multiple intertwined biomarkers related to AAA pathophysiology and progression, glutathione, glycine and serine were most promising.</p

    Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore

    Get PDF
    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use

    Practical Tools to Implement Massive Parallel Pyrosequencing of PCR Products in Next Generation Molecular Diagnostics

    Get PDF
    Despite improvements in terms of sequence quality and price per basepair, Sanger sequencing remains restricted to screening of individual disease genes. The development of massively parallel sequencing (MPS) technologies heralded an era in which molecular diagnostics for multigenic disorders becomes reality. Here, we outline different PCR amplification based strategies for the screening of a multitude of genes in a patient cohort. We performed a thorough evaluation in terms of set-up, coverage and sequencing variants on the data of 10 GS-FLX experiments (over 200 patients). Crucially, we determined the actual coverage that is required for reliable diagnostic results using MPS, and provide a tool to calculate the number of patients that can be screened in a single run. Finally, we provide an overview of factors contributing to false negative or false positive mutation calls and suggest ways to maximize sensitivity and specificity, both important in a routine setting. By describing practical strategies for screening of multigenic disorders in a multitude of samples and providing answers to questions about minimum required coverage, the number of patients that can be screened in a single run and the factors that may affect sensitivity and specificity we hope to facilitate the implementation of MPS technology in molecular diagnostics

    An animal-specific FSI model of the abdominal aorta in anesthetized mice

    Get PDF
    Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting

    Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Get PDF
    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone

    Comprehensive Gene-Expression Survey Identifies Wif1 as a Modulator of Cardiomyocyte Differentiation

    Get PDF
    During chicken cardiac development the proepicardium (PE) forms the epicardium (Epi), which contributes to several non-myocardial lineages within the heart. In contrast to Epi-explant cultures, PE explants can differentiate into a cardiomyocyte phenotype. By temporal microarray expression profiles of PE-explant cultures and maturing Epi cells, we identified genes specifically associated with differentiation towards either of these lineages and genes that are associated with the Epi-lineage restriction. We found a central role for Wnt signaling in the determination of the different cell lineages. Immunofluorescent staining after recombinant-protein incubation in PE-explant cultures indicated that the early upregulated Wnt inhibitory factor-1 (Wif1), stimulates cardiomyocyte differentiation in a similar manner as Wnt stimulation. Concordingly, in the mouse pluripotent embryogenic carcinoma cell line p19cl6, early and late Wif1 exposure enhances and attenuates differentiation, respectively. In ovo exposure of the HH12 chicken embryonic heart to Wif1 increases the Tbx18-positive cardiac progenitor pool. These data indicate that Wif1 enhances cardiomyogenesis
    corecore