7 research outputs found

    A reduced Iwan model that includes pinning for bolted joint mechanics

    Get PDF
    Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaled version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). The reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data

    A Comprehensive Set of Impact Data for Common Aerospace Metals

    Get PDF
    The results of two sets of impact experiments are reported within. To assist with model development using the impact data reported, the materials are mechanically characterized using a series of standard experiments. The first set of impact data comes from a series of coefficient of restitution (COR) experiments, in which a 2 m long pendulum is used to study “in-context” measurements of the coefficient of restitution for eight different materials (6061-T6 aluminum, phosphor bronze alloy 510, Hiperco, nitronic 60A, stainless steel 304, titanium, copper, and annealed copper). The coefficient of restitution is measured via two different techniques: digital image correlation (DIC) and laser Doppler vibrometry (LDV). Due to the strong agreement of the two different methods, only results from the digital image correlation are reported. The coefficient of restitution experiments are in context as the scales of the geometry and impact velocities are representative of common features in the motivating application for this research. Finally, a series of compliance measurements are detailed for the same set of materials. The compliance measurements are conducted using both nano-indentation and micro-indentation machines, providing sub-nm displacement resolution and μN force resolution. Good agreement is seen for load levels spanned by both machines. As the transition from elastic to plastic behavior occurs at contact displacements on the order of 30 nm, this data set provides a unique insight into the transitionary region

    Designing energy dissipation properties via thermal spray coatings

    Get PDF
    The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. The dissipative properties are studied across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributable to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Further, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events

    Preface

    Full text link

    Preface

    Full text link

    Experimental Assessment of the Influence of Interface Geometries on Structural Dynamic Response

    No full text
    Jointed interfaces are sources of the greatest amount of uncertainty in the dynamics of a structural assembly. In practice, jointed connections introduce nonlinearity into a system, which is often manifested as a softening response in frequency response, exhibiting amplitude dependent damping and stiffness. Additionally, standard joints are highly susceptible to unrepeatability and variability that make meaningful prediction of the performance of a system prohibitively difficult. This high degree of uncertainty in joint structure predictions is partly due to the physical design of the interface. This paper experimentally assesses the influence of the interface geometry on both the nonlinear and uncertain aspects of jointed connections. The considered structure is the Brake-Reuß beam, which possesses a lap joint with three bolted connections, and can exhibit several different interface configurations. Five configurations with different contact areas are tested, identified, and compared, namely joints with complete contact in the interface, contact only under the pressure cones, contact under an area twice that of the pressure cones, contact only away from the pressure cones and Hertzian contact. The contact only under the pressure cone and Hertzian contact are found to behave linearly in the range of excitation used in this work. The contact area twice that of the pressure cone behaves between the complete contact and contact only under the pressure cone cases.Nonlinear Mechanics and Dynamics Research Institut
    corecore