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Abstract Bolted joints are prevalent in most as-

sembled structures; however, predictive models for

their behavior do not exist. Calibrated models,

such as the Iwan model, are able to predict the

response of a jointed structure over a range of ex-

citations once calibrated at a nominal load. The

Iwan model, though, is not widely adopted due

to the high computational expense of implementa-

tion. To address this, an analytical solution of the

Iwan model is derived under the hypothesis that

for an arbitrary load reversal, there is a new dis-
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tribution of dry friction elements, which are now

stuck, that approximately resemble a scaled ver-

sion of the original distribution of dry friction el-

ements. The dry friction elements internal to the

Iwan model do not have a uniform set of parame-

ters and are described by a distribution of param-

eters, i.e. which internal dry friction elements are

stuck or slipping at a given load, that ultimately

governs the behavior of the joint as it transitions

from microslip to macroslip. This hypothesis al-

lows the model to require no information from pre-

vious loading cycles. Additionally, the model is ex-

tended to include the pinning behavior inherent in

a bolted joint. Modifications of the resulting frame-

work are discussed to highlight how the constitu-

tive model for friction can be changed (in the case

of an Iwan-Stribeck formulation) or how the dis-

tribution of dry friction elements can be changed



(as is the case for the Iwan plasticity model). The

Reduced Iwan Plus Pinning (RIPP) model is then

applied to the Brake-Reuß beam in order to dis-

cuss methods to deduce model parameters from

experimental data.

Keywords Joint Mechanics · Iwan Model ·

Pinning · Friction

1 Introduction

One of the great remaining challenges in classi-

cal structural dynamics and solid mechanics is the

prediction of the behavior of a jointed connection.

Despite the prevalence of jointed connections in en-

gineering structures, predictive models do not ex-

ist for several reasons: in most applications there

is no penalty for over designing a joint to ensure

that it survives most realistic loading scenarios, the

physics to predict the behavior of a joint is reliant

upon an improved understanding of friction (which

is a nontrivial undertaking), and the joint models

that do exist are often computationally burden-

some (which results in analysts favoring simplis-

tic and hopefully conservative representations in-

stead). However, in several industries (aerospace,

defense, automotive, etc.) there is becoming a press-

ing need to better understand the behavior of a

jointed connection. In many of the pertinent ap-

plications, the jointed connections are part of a

system that will only be fabricated a small number

of times and that has strict weight and space lim-

its (increasing the penalty for over designing the

joint). Conventional approaches to modeling the

joint, due to harsh loading environments and non-

linearities, often are not as conservative as an an-

alyst anticipates. In fact, the use of linear models,

calibrated at high excitation levels, significantly

under predict the energy dissipation and joint stiff-

ness at low load levels. Consequently, a number of

failures have been reported in recent years that are

related to bolted joints (see, for instance, (Deck-

stein and Traufetter 2012)).

The present research is motivated by one par-

ticular class of joint models that are used in finite

element analysis as well as analytical mechanics

and reduced order models: the Iwan model. The

broad category of constitutive models referred to

as Iwan models are used to model dissipative be-

havior with a single element. These models orig-

inally were applied to elastic-plastic material re-

sponses (Iwan 1966; Iwan 1967) and have more re-

cently been adapted to joint mechanics (Segalman

2005; Segalman and Starr 2004). In particular, the

four-parameter Iwan model (Segalman 2005) reg-
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ularizes the joint interface to be represented by a

single element, which contains many internal de-

grees of freedom. The four-parameter Iwan model

is, essentially, a constitutive model that describes

the hysteretic behavior of micro- and macroslip

across a jointed interface and replaces the kine-

matics of the adjacent interfacial surfaces with a

nonlinear constitutive model. The model’s consti-

tutive parameters can be populated either with

representative experimental data or deduced from

fine mesh finite element analysis. The constitutive

formulation is fundamentally that of a Preisach

model and has basis in (Bauschinger 1886; Mas-

ing 1926; Prandtl 1928; Ishlinskii 1944; Iwan 1966;

Iwan 1967). More recently, the Iwan model has

been extended to be considered in modal space

(as opposed to physical coordinates) (Deaner et

al. 2013).

One difficulty present in the implementation of

the Iwan model is its high computational cost. The

common set of Iwan models used for the analy-

sis of bolted joints are based on a discretized set

of dry friction sliders (Segalman 2005). This dis-

cretization leads to the need to store the individual

state of each dry friction slider in the model, effec-

tively increasing the degrees of freedom from one

to an arbitrarily large number (each of which corre-

sponds to a nonlinear, discontinuous system, which

can lead to significant numerical challenges (Van

de Vrande, Van Campen, and de Kraker 1999)).

In what follows, a reduced formulation of the Iwan

model is derived based on the assumption that

when a load reversal occurs, the collective state of

the dry friction sliders resembles a scaled version of

the original distribution of dry friction sliders (this

assumption is discussed in Section 2.3.1). While

this is a subtle change from the four-parameter

Iwan model formulated in (Segalman 2005), both

the new and old models are still approximations

that can be calibrated to fit the data accurately,

and the resulting model thus does not lose appli-

cability from this new assumption.

2 Analytical Development

Conceptually, there are three distinct regimes for

the model, as can be seen in Fig. 1: microslip (0 ≤

φ < ϕMAX), macroslip (ϕMAX ≤ φ < δP ), and

pinning (δP ≤ φ). In what follows, the force in

these three regimes is calculated as part of two

separate calculations: one calculation for the force

due to the Iwan model, which includes micro- and

macroslip, and one calculation for the pinning force.

This division is necessitated as the Iwan model is

based on the relative displacement across the joint
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u while the pinning forces are based on the global

displacement of the joint φ.1

Displacement

F
o
rc
e

FS

δP

KT

KP

φMAX

Fig. 1 Illustrative drawing of the constitutive force F

for a bolted joint as a function of displacement φ.

2.1 Pinning Force

The pinning force occurs when the shank of the

bolt engages the edge of the through hole (of di-

ameter 2δP ) in which it is located. This contact is

thus between two cylindrical surfaces. If no plastic-

ity is assumed to occur, this can be modeled using

Hertz’s (Johnson 1985) elastic contact formulation

for two cylinders2

FPIN =
π

4
E∗Ld. (1)

1 Thus, the three regimes defined above hold for a nar-

row range of u and φ, including when u = φ. Otherwise,

microslip and macroslip must be defined in terms of u

and pinning must be defined in terms of φ.

2 Technically, Hertz’s formulation is for two cylinders

contacting each other, not one cylinder inside another

For this formulation, E∗ is the effective modulus

of the two materials in contact (each having elastic

modulus Ej and Poisson’s ratio νj)

E∗ =

(
1− ν21
E1

+
1− ν22
E2

)−1

. (2)

The engagement length of the bolt’s shank with

the through hole (i.e. the height of the hole) is L,

and d = φ−δP is the interference/contact displace-

ment of the two surfaces. As (1) is linear in d, FPIN

can be expressed as a spring force FPIN = KP d

with stiffness

KP =
π

4
E∗L. (3)

Thus, all parameters needed to defineKP are based

on material and geometric properties, which can be

easily determined.

2.2 Relation of Relative and Global

Displacements for the Iwan and Pinning Forces

In what follows, the relative displacement u is de-

fined to be positive in the slip direction. Addition-

ally, δ0 is defined to be the global displacement of

the system at the start of a slip event (e.g. a load

reversal), and F0 is defined to be the force due

to the Iwan element at the start of a slip event

(i.e. from the previous loading cycle). In order to

cylinder. However, it is assumed that this case can be

represented with Hertz’s model without loss of accuracy.
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relate the force due to the Iwan model and the

force due to pinning,

φ = δ0 ± u (4)

(+u for forward motion, −u for backward motion

due to u being positive in the slip direction). This

relationship establishes the constraint that for δ0±

u∓ δP ≥ 0, the pinning force is engaged

FPIN = ±H(δ0 ± u∓ δP )×KP (δ0 ± u∓ δP ), (5)

with the Heaviside step functionH(·) used to spec-

ify pinning forces only when the bolt shank en-

gages the bolt hole.

2.3 Four-Parameter Iwan Model Overview

To model the forces in both the micro- and macroslip

regimes, the Iwan model is proposed. As a starting

point, the four parameter Iwan model developed in

(Segalman 2005) is used. In that research, the con-

stitutive representation for the Iwan model is

FIWAN =

∫ ∞

0

ρ(ϕ) (u(t)− x(t, ϕ)) dϕ, (6)

which describes a distribution ρ(ϕ) of dry friction

sliders (i.e. Jenkins elements, originally attributed

to (Jenkins 1962)) such as shown in Fig. 2. The

distribution, ρ(ϕ), represents the number of sliders

that slip when stretched a distance ϕ. The units of

ρ are force/length2, which comes from the orig-

inal formulation of (Segalman 2005) convoluting

the distribution ρ with the stiffness common to

all of the dry friction sliders (K in Fig. 2). As is

seen later with the discussion beginning around

Eq. 12, the displacement ϕ across each slider is

the amount that a slider is stretched (i.e. ϕ is not a

relative displacement of the joint, but rather a rel-

ative stretching of each dry friction slider). Thus,

at some displacement ϕ, ρ(ϕ)/c sliders begin to

slip (here, c is a normalization constant to account

for the units of ρ). Note that in (Segalman 2005),

the global displacement U is used in place of the

relative displacement u; this substitution is made,

though, without loss of generality in what follows

due to the introduction of F0 and δ0, mentioned

above. The jth slider has instantaneous displace-

ment xj = x(t, ϕj), and transitions from sticking

to sliding at a displacement of xj = ϕj . The choice

of distribution ρ(ϕ) is a nontrivial task, and sev-

eral choices are discussed in what follows. For the

model proposed in (Segalman 2005), the general

form of the resulting hysteresis loop is illustratively

shown in Fig. 3.

The four-parameter Iwan model of (Segalman

2005) is subject to the two Masing conditions (which

are both visible in Fig. 3): 1) the forward and back-
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Fig. 2 Illustrative drawing of an Iwan model as a par-

allel arrangement of dry friction sliders.

Displacement
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Fig. 3 Illustrative drawing of a typical hysteresis curve

for a four-parameter Iwan model described by (Segal-

man 2005).

ward curves are reflections of one another and are

scaled to fit between the initiation of the loading

point and the force for macroslip, and 2) that if a

trajectory intersects the curve of a previous load-

ing cycle, then it will change to follow the previous

curve. In what follows, the first Masing condition is

exploited: a displacement in the negative direction

is the same as a displacement in the positive direc-

tion with a change of coordinates. The second Mas-

ing condition, though, due to possible transitions

from microslip to macroslip to pinning, is not ap-

plied in vibratory environments. In a quasi-static

framework, in which the model oscillates between

two extreme forces, the second Masing condition

will still hold; but in vibratory environments, the

applicability of the second Masing condition is less

clear, and is neglected (see, for instance, the results

of Section 3). By assuming that this condition can

be neglected, the need for a record of the history of

previous loading cycles is eliminated from this re-

duced formulation (thus removing a challenge that

is evident in models such as (Smallwood, Gregory,

and Coleman 2001; Segalman and Starr 2004)).

The distinguishing feature of the four param-

eter Iwan model is the proposed distribution of

Jenkins elements ρ(ϕ), which specifies the num-

ber of dry friction sliders internal to the Iwan el-

ement that slip after being stretched a distance

ϕ. In (Segalman 2005), the proposed distribution
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(shown in Fig. 4(a)) is

ρ(ϕ) = Rϕχ (H(ϕ)−H(ϕ− ϕMAX))

+ Sδ(ϕ − ϕMAX) (7)

R =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

) (8)

S =
FS

ϕMAX

(
β

β + χ+1
χ+2

)
(9)

ϕMAX =
FS(1 + β)

KT

(
β + χ+1

χ+2

) , (10)

with Delta function δ(·). In this formulation, 3+χ

is the energy dissipated per cycle of small ampli-

tude oscillation (−1 < χ ≤ 0 is therefore permis-

sible in this model). The distribution ρ is a power

law relationship that is truncated at ϕMAX by a

Delta function. The ratio of the stiffness of the

Delta function portion of the distribution S to the

power law portion of the distribution R is defined

as β

β =
S

Rϕχ+1
MAX/(χ+ 1)

, (11)

and is typically determined from measurements of

dissipation versus excitation amplitude (Deaner et

al. 2015). Note that with the definition of β, the

model of (Segalman 2005) can be posed in terms

of FS , KT , χ, and β, as opposed to a different set

of parameters that are more difficult to measure

directly (e.g. FS , R, S, and ϕMAX).3 The rela-

3 Though, the measurement of ϕMAX instead of FS

is often more practical as testing to macroslip is not

always feasible.

tionships of Eqs. 8-10 are developed in (Segalman

2005) with this ease of model parameter determi-

nation in mind.

φ
MAX

φ

ρ(φ)

1/φ
MAX

φ
MAX

φ

ρ(φ)

φ
MAX

φ

ρ(φ)

(a)

(b)

(c)

Fig. 4 Illustrations of (a) the distribution of (Segalman

2005), (b) the uniform distribution of (Iwan 1966), and

(c) Segalman’s proposed distribution.
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With the definition of u in Eq. 4 the quantity

from Eq. 6

u− x(t, ϕ) =


u if sliderϕ is stuck

ϕ if sliderϕ is sliding.

(12)

The slip function Γ can then be defined as

Γ (u, ϕ) = u− x(t, ϕ) =


u u < ϕ

ϕ u ≥ ϕ.

(13)

Substituting Γ and ρ into Eq. 6 yields

FIWAN =

∫ ϕMAX

0

Γ (u, ϕ)Rϕχdϕ+SΓ (u, ϕMAX).

(14)

Based on Γ , this can be broken into two integrals

FIWAN =

∫ u

0

Rϕχ+1dϕ+

∫ ϕMAX

u

uRϕχdϕ

+ SΓ (u, ϕMAX), (15)

which has solution

FIWAN = R

((
1

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)

+ SΓ (u, ϕMAX). (16)

Substituting Eqs. 8 and 9 gives the full expression

for the Iwan forces

FIWAN =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

)
×

((
1

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)

+
FS

ϕMAX

β

β + χ+1
χ+2

Γ (u, ϕMAX). (17)

In the limiting case of u ≥ ϕMAX , the Iwan force

reduces to FIWAN = FS .

2.3.1 Considerations for Cyclic Loading

Two cases must be considered for the cyclic load-

ing: loading to macroslip, and loading within the

microslip regime. In loading to macroslip, all of

the Jenkins sliders are, by definition, in slip, and

the first Masing condition can be applied. For the

first cycle of loading, it is assumed that F0 = 0

and δ0 = 0. After the first cycle in which the joint

is in macroslip, F0 = FS (as F0 doesn’t include

pinning forces), and each Jenkins element is fully

stretched in the direction opposite from the new

loading direction. For oscillations between two ex-

tremes (i.e. −FS and FS), the first Masing condi-

tion (Segalman 2005; Jayakumar 1987) yields

F+(u) = −FS + 2FIWAN

(
φ− δ0

2

)
(18)

F−(u) = −FS − 2FIWAN

(
δ0 − φ

2

)
. (19)

The forces F+ and F− are for positive and negative

loading cycles respectively, which result in Eqs. 18

and 19 having the form

F± = ∓FS ± γFIWAN

(
±φ∓ δ0

γ

)
, (20)

where γ scales the function appropriately.

In many vibratory environments, however, the

limits of oscillation are not necessarily between

the two extreme values. Therefore, an incomplete
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case (e.g. never loading to the point of macroslip)

must be considered. In the previously defined rela-

tive coordinate system for u, after a load reversal,

−F0 > −FS , the Jenkins elements of strength ϕ

are fully stretched in the direction opposite from

the new loading direction for ϕ < u0, and are

stretched a distance u0 in the direction opposite

from the new loading direction for ϕ > u0. As a

result, Eq. 15 becomes

FIWAN =

∫ u

0

R

(
ϕ

2

)χ+1

dϕ

+

∫ ϕMAX

u

uRϕχdϕ+ SΓ (u, ϕMAX)− F0, (21)

for u ≤ 2u0, and, with ψ = ϕ− 2u0,

FIWAN =
1

2χ+1

∫ 2u0

0

Rϕχ+1dϕ+

∫ u

2u0

Rψχ+1dψ

+

∫ ϕMAX

u

uRϕχdϕ+ SΓ (u, ϕMAX)− F0 (22)

for u > 2u0. The form of Eq. 22 is a (nonlinearly)

scaled version of Eq. 15. Thus, the hypothesis is

proposed:

Hypothesis For an arbitrary load reversal, there

is a new distribution of Jenkins elements, which are

now stuck, that approximately resemble a scaled

version of the original distribution of Jenkins ele-

ments.

As a first order approximation of the new dis-

tribution, a linear scaling function is used in which

γ is bounded by 0 < γ ≤ 2. This leads to the func-

tional form

FSLIDING =



F0 +
FS−F0

FS
FIWAN

(
u FS

FS−F0

)
loading

F0 − −FS−F0

−FS
FIWAN

(
−u −FS

−FS−F0

)
reverse loading

(23)

This is rewritten as

FSLIDING = F0+
FS ∓ F0

FS
FIWAN

(
±u FS

FS ∓ F0

)
,

(24)

using the FIWAN defined in Eq. 17. This relation-

ship is predicate on F0 being a global value such

that −FS ≤ F0 ≤ FS . The complete formulation

for the RIPP joint model can now be expressed as

FRIPP = FPIN + FSLIDING. (25)

In the case of δ0 ≥ δP−ϕMAX , this implies that

macroslip is not necessary to achieve pinning. It

should be noted, however, that the force F0 should

be determined solely from FSLIDING in order for

the model to be consistent.
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2.3.2 Comparison With the Discrete

Four-Parameter Iwan Model

As a verification of the analytical RIPP joint for-

mulation, Fig. 5 compares the RIPP joint model

(25) to the discretized four-parameter Iwan model

of (Segalman 2005) on which it is based. The pa-

rameters for (Segalman 2005) are chosen based

on a 304 Stainless Steel lap joint, such as found

in (Segalman et al. 2009), and are listed in Ta-

ble 1. The range for the displacement to calcu-

late the hysteresis curve is specified as ±2.25 mm.

Outside of the pinning region, the two curves are

coincident. Near the transition from microslip to

macroslip, the discretization of (Segalman 2005)

is evident under high magnification (as the curve

appears faceted), but at the scale shown the two

models are in complete agreement.

Property Value

Tangential Stiffness, KT 1.5×107 N/m

Macroslip Force, FS 4 kN

Dissipation Exponent, χ -0.5

Stiffness Ratio, β 0.005

Pinning Stiffness, KP 107 N/m

Pinning Clearance, δP 2 mm

Table 1 Joint parameters.

Displacement, mm

F
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Fig. 5 Hysteresis curves for the discretized four-

paramter Iwan model of (Segalman 2005) (—), and the

RIPP joint model (– –).

2.4 Extension to the Five-Parameter Iwan Model

The five-parameter Iwan model, proposed by Migno-

let (Wang and Mignolet 2014), belongs to a class

of split Iwan models in which the response is split

into two regimes. The fifth parameter is defined

as the ratio between dynamic µD and static µS

friction

θ =
µD

µS
. (26)

The conceptual split in this model is that once

a Jenkins element begins to slide, it is governed

by dynamic friction rather than the static friction

that governed it in the stick state. The proposed

distribution ρ(ϕ), though, remains the same. Con-
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sequently, the Iwan force becomes

FIWAN = θ

∫ u

0

Rϕχ+1dϕ+

∫ ϕMAX

u

uRϕχdϕ

+ SΓ (u, ϕMAX). (27)

In the limiting case of θ = 1, this reduces to Eq. 15.

As before, the solution follows that

FIWAN = R

((
θ

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)

+ SΓ (u, ϕMAX). (28)

Substituting R and S yields the final form of the

Iwan force equation for the five-parameter Iwan

model

FIWAN =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

)
×

((
θ

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)

+
FS

ϕMAX

β

β + χ+1
χ+2

Γ (u, ϕMAX). (29)

In the limiting case of u ≥ ϕMAX ,

FIWAN = FS

β + θχ+1
χ+2

β + χ+1
χ+2

, (30)

which is less than FS for θ < 1.

In Fig. 6, the RIPP joint model of the four-

parameter Iwan model is compared to the RIPP

joint model of the five-parameter Iwan model with

θ = 0.75 and all other parameters the same as be-

fore. Both models exhibit the same tangent stiff-

ness immediately after a load reversal; however the

five-parameter model has a lower peak force due to

θ < 1. One unexpected consequence of this (cou-

pled with the neglecting of the second Masing con-

dition, as mentioned above) is that the maximum

and minimum forces vary from one loading cycle

to the next.

Displacement, mm
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N

0 3-3

0

-10

10

Fig. 6 Hysteresis curves for the RIPP joint model of

the four-parameter Iwan model (—), and of the five-

parameter Iwan model with θ = 0.75 (– –).

2.5 Extension to the Uniform Iwan Distribution

In (Iwan 1966), the Iwan element is formulated

with a uniform distribution for ρ (Fig. 4(b)) in

order to represent energy dissipation due to plastic

processes. The width of the distribution for the

present work is taken to be ϕMAX , with a height

of 1/ϕMAX . This distribution leads to the Iwan

force

FIWAN =

∫ ϕMAX

0

c

ϕMAX
Γ (u, ϕ)dϕ. (31)
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The constant c is determined by setting the result-

ing solution equal to FS , yielding

FIWAN =


2FS

ϕMAX

(
u− u2

2ϕMAX

)
u < ϕMAX

FS u ≥ ϕMAX .

(32)

Using the same parameters as from Fig. 5, Fig. 7

compares the hysteresis curves for the RIPP joint

model of the four-parameter Iwan model to that of

the uniform distribution Iwan model. Due to the

uniform distribution for ρ(ϕ), the tangent stiffness

appears much lower than for the four-parameter

Iwan model. By definition, the macroslip forces

and pinning behavior is the same for the two mod-

els though.

Displacement, mm
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k
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0 3-3

0
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10

Fig. 7 Hysteresis curves for the RIPP joint model of

the four-parameter Iwan model (—), and of the uniform

distribution Iwan model (– –).

2.6 Extension to Other Distribution Functions

The three models discussed above form a subset

of all possible Iwan-type models. The distribution

proposed in (Segalman 2005) is an approximation

itself as a more accurate model requires both more

parameters and more experimental data than is

available (e.g. data on the break-free force for a

joint). A plausible model, though, is suggested by

Dan Segalman to resemble the curve shown in Fig. 4(c).

A potential mathematical form for this model is

ρ(ϕ) = Rϕχ + S (ϕMAX − ϕ)
−γ

. (33)

In this model, γ > 0 and S is not necessarily the

same as proposed in (Segalman 2005) due to scal-

ing issues. This precise form, of course, has no solu-

tion for ϕ = ϕMAX , which could easily be resolved

by truncating ρ(ϕ) for ϕMAX − ϵ ≤ ϕ ≤ ϕMAX

(where ϵ ≪ ϕMAX); however, without experimen-

tal data to better quantify the nature of this dis-

tribution, any solution would be ad hoc and spec-

ulative.

2.7 Extension to Higher Order Friction Models

Another potential Iwan model is the Iwan-Stribeck4

model (for discussions of the Stribeck friction model,

4 This model is proposed purely as an example of how

to apply the RIPP joint formulation to other constitu-

tive models. The burden associated with parameter es-
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see (Armstrong-Hélouvry, Dupont, and Canudas

de Wit 1994; Gaul and Nitsche 2000; Gaul and

Nitsche 2001)). This model is proposed as a method

to smooth out the nonlinearity introduced by the

split five-parameter Iwan model of (Wang and Migno-

let 2014). The Stribeck friction model postulates

that the friction force is

F (v) =

(
FC + (FS − FC)e

−
(

v
vS

)δS
)
sign(v)+FV v,

(34)

which introduces the parameters FC as the fric-

tion force level that is proportional to the normal

load, FS as the stiction force (which is equal to

the previously defined macroslip force FS), FV as

a viscous damping term due to lubrication viscos-

ity, and empirically defined quantities vS and δS .

Previous studies of the Stribeck friction model typ-

ically define δS ∈ [1/2, 2], with δS = 2 correspond-

ing to the Gaussian model (Armstrong-Hélouvry,

Dupont, and Canudas de Wit 1994). For very large

values of δS , this corresponds to a system with an

effective boundary lubricant. From the five-parameter

Iwan model, FC and FS are related via

θ =
FC

FS
. (35)

timation is too high to consider this a practical model

for analysts to use.

Using the distribution ρ(ϕ) defined in (Segalman

2005), this results in an eight-parameter Iwan model.5

Despite the burden placed on the analyst to popu-

late the parameters of these models, the derivation

of a RIPP joint representation is straightforward.

For an imposed state with system slip displace-

ment u and sliding velocity v, the total force act-

ing through the joint system for a discrete number

of friction sliders is

F =
∑

ϕ̃i≥ku

ku+
∑

ϕ̃i≤ku

θϕ̃i

+

(
FS(1− θ)e

−
(

v
vS

)δS
)
sign(v) + FV v. (36)

In the original nomenclature of (Iwan 1966; Segal-

man and Starr 2004), ϕ̃i is the slip force for the

ith slider, k is the stiffness common to all of the

friction sliders, and the population density func-

tion is expressed as ρ̃(ϕ̃i). Following the derivation

of (Segalman and Starr 2004), the summation of

forces over an infinite number of sliders yields the

5 For an even more burdensome model, consider

the seven-parameter friction model in (Armstrong-

Hélouvry, Dupont, and Canudas de Wit 1994), with

the ρ(ϕ) from (Segalman 2005); this results in a ten-

parameter Iwan model!
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integral form of the force equation

F = ku

∫ ∞

ku

ρ̃(ϕ̃)dϕ̃

+

∫ ku

0

ρ̃(ϕ̃)
(
θϕ̃

+

(
FS(1− θ)e

−
(

v
vS

)δS
)
sign(v) + FV v

)
dϕ̃.

(37)

Using a change of variables (ϕ = ϕ̃/k and ρ(ϕ) =

k2ρ̃(kϕ)) yields

F = u

∫ ∞

u

ρ(ϕ)dϕ

+
1

k

(
FS(1− θ)e

−
(

v
vS

)δS

sign(v) + FV v

)∫ u

0

ρ(ϕ)dϕ

+ θ

∫ u

0

ϕρ(ϕ)dϕ. (38)

The common spring stiffness k is related to known

parameters via kϕMAX = FS . Using the same ρ(ϕ)

as in (Segalman 2005), the (eight-parameter) Iwan-

Stribeck model’s force becomes

FIWAN =
FS(χ+ 1)

ϕχ+2
MAX

(
β + χ+1

χ+2

)
×

((
θ

χ+ 2
− 1

χ+ 1

)
uχ+2 +

ϕχ+1
MAX

χ+ 1
u

)

+
FS

ϕMAX

β

β + χ+1
χ+2

Γ (u, ϕMAX)

+
1

β + χ+1
χ+2

(
FS(1− θ)e

−
(

v
vS

)δS

sign(v) + FV v

)

× uχ+1

ϕχ+1
MAX

. (39)

Note that the sign(v) term can be neglected by

using the relative definition of u in which displace-

ments and, consequently, velocities, always occur

in a positive reference frame. In the extreme case

of vS = FV = 0, the five-parameter model is re-

covered (as the sign(0) = 0 property is important

in this extreme case).

The hysteresis curve for the Iwan-Stribeck model,

with θ = 0.75, FV = 1 mN·s/m, vS = 0.1 mm/s,

and δS = 2 is shown in Fig. 8 for three differ-

ent loading rates. At the highest loading rate (4

mm/s), the initial loading portion of the hystere-

sis curve is identical to the five-parameter Iwan

model (shown in Fig. 6) up until the first load

reversal, at which point the Iwan-Stribeck model

predicts a more compliant response. At lower load-

ing rates, the Iwan-Stribeck model appears signif-

icantly more stiff than the four-parameter Iwan

model. It is worth noting, though, that in dynamic

applications, the loading rate is not a constant

value as used here.

The extension of the RIPP joint formulation to

other, phenomenologically different friction mod-

els is easily managed following a similar proce-

dure as for the Iwan-Stribeck model. For multi-

dimensional models that couple in-plane and out-

of-plane forces, such as (Petrov and Ewins 2004;

Cigeroglu, An, and Menq 2007), the present frame-

work is not compatible for this type of coupling,

and this is an area of active research.
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Fig. 8 Hysteresis curves for the RIPP joint model of the

four-parameter Iwan model (—), and of Iwan-Stribeck

model for loading rates of 0.4 µm/s (– · –), 40 µm/s (–

–), and 4 mm/s(· · · ).

3 Dynamic Response of the RIPP Joint

Models

The significant difference between the Iwan model

and the Iwan-Stribeck model is attributable to the

quasi-static nature of the hysteresis curve calcu-

lation (i.e. the constant velocity). To assess these

models dynamically, a single degree of freedom sys-

tem with mass 1 kg is connected to ground through

a joint element (both the discretized four-parameter

Iwan model and the RIPP joint models discussed

are used). The mass is excited by an applied force

of 5 sin(100×2πt) kN, and the joint parameters are

the same as in Table 1. The first 50 ms of the tran-

sient response is shown in Figs. 9 and 10 for the five

different models (the discretized 4-parameter Iwan

model of (Segalman 2005), the 4-parameter Iwan

model RIPP joint formulation, the 5-parameter

Iwan model RIPP joint formulation, the uniform

distribution RIPP joint formulation, and the Iwan-

Stribeck RIPP joint model). The effect of pinning

is clearly discernible from the responses of the 4-

parameter RIPP joint model and the 4-parameter

discretized Iwan model in Fig. 9. If pinning is not

considered, the results from the discretized 4-parameter

Iwan model and the 4-parameter Iwan model RIPP

joint formulation are identical, which is paramount

as small differences in the constitutive model for

nonlinearities within a system can lead to very

large differences in optimal design of the system

(Brake 2014). In Fig. 10, the 5-parameter RIPP

joint model and the Iwan-Stribeck RIPP joint mod-

els are nearly coincident for the viscous parame-

ters used (which are representative of dry contact).

This is an encouraging result as it shows that two

phenomenologically different friction models are

converging towards predicting the same behavior

in this system.

The hysteresis plots from the transient dynamic

simulations are shown in Figs. 11 and 12. Due to

the vibratory environment, multiple loading and

unloading cycles are observed near the extremi-

ties of the displacement values. In particular, each
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Fig. 9 Transient response of the single degree of free-

dom oscillator attached to a discretized four-parameter

Iwan model from (Segalman 2005) (· · · ), the RIPP joint

representation of the four-parameter Iwan model (—),

and an a uniform distribution RIPP joint model (– –).
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Fig. 10 Transient response of the single degree of free-

dom oscillator attached to the RIPP joint representation

of the four-parameter Iwan model (—), the RIPP joint

model for the five-parameter Iwan model with θ = 0.75

(– –), and the Iwan-Stribeck RIPP joint model (· · · ).

of the RIPP joint models shows behavior in which

pinning occurs, the slip direction reverses but does

not achieve macroslip in the opposite direction be-

fore reversing again and initiating pinning once

more. After several impacts between the bolt shank

and bolt hole, the applied force is sufficient to initi-

ate macroslip in the opposite direction before this

process is repeated again. By contrast, the dis-

cretized four-parameter Iwan model, which does

not include pinning, exhibits no such rebound dy-

namics. This is to be expected as pinning creates a

non-smooth nonlinearity in the macroslip regime.

Similar to the results in Fig. 10, the five-parameter

RIPP joint model and the Iwan-Stribeck RIPP

joint model are coincident in Fig. 12, in contrast

to Fig. 8 (in which the loading rate was constant).
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Fig. 11 Dynamic hysteresis plot of the single degree

of freedom oscillator attached to a discretized four-

parameter Iwan model from (Segalman 2005) (· · · ), the

RIPP joint representation of the four-parameter Iwan

model (—), and an a uniform distribution RIPP joint

model (– –).

For each of the analytical Iwan models, a sig-

nificant reduction in computation time compared
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Fig. 12 Dynamic hysteresis plot of the single degree

of freedom oscillator attached to the RIPP joint rep-

resentation of the four-parameter Iwan model (—), the

RIPP joint model for the five-parameter Iwan model

with θ = 0.75 (– –), and the Iwan-Stribeck RIPP joint

model (· · · ).

to the discretized four-parameter Iwan model is

observed. To calculate the quasi-static hysteresis

loops or the dynamic response, the computational

time of the discretized four-parameter Iwan model

is observed to be a factor of three longer than the

analytical formulation (both when pinning is and

is not active). For comparing the other analyti-

cal model to the discretized model, the Migno-

let distribution is also approximately a factor of

three faster, the uniform distribution is an order

of magnitude faster, and the Iwan-Stribeck model

is a factor of two faster for the quasi-static hys-

teresis loops and approximately 25% faster for the

dynamic simulations. To quantify the performance

of the analytical models more accurately, a more

realistic simulation should be used that is repre-

sentative of a real assembly; the numbers provided

here are for illustrative purposes.

4 Parameter Estimation

This section is provided as an example of how pa-

rameters might be estimated from ringdown data.

In what follows, the response of the system is treated

as if it is a single harmonic response (i.e. as if the

data had been filtered using a modal or bandpass

filter); however, in reality there are multiple har-

monics. The repercussions of this are that each

mode should be investigated separately in order to

develop modal parameters, instead of the global

parameters deduced from a single harmonic re-

sponse. For more information on parameter esti-

mation for Iwan elements, refer to (Deaner 2013;

Deaner et al. 2013; Sracic, Allen, and Sumali 2012).

Another complication in some experimental setups

is that there can be multiple sources of damp-

ing (such as damping due to bolted joints, due to

the support structure, and due to material dissi-

pation), necessitating a specialized technique for

decoupling the effects from each type of dissipa-

tion (Liang and Feeny 1998). Fortunately for the

present analysis, damping due to sources other than
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the jointed interface is negligible. Lastly, because

jointed systems are very sensitive to a number of

parameters (such as bolt torque and loading order,

excitation location, interface alignment, etc. (Meyer

and Adams 2015)), care needs to be taken in mea-

suring the system to ensure that the variation ob-

served in measured parameters is due to frictional

interactions and not setup effects.

Multiple methods have been developed to de-

termine the parameters for a jointed structure, specif-

ically focusing on determining the stiffness and

dissipation of the structure as a function of exci-

tation amplitude (Roettgen and Allen Under Re-

view; Kerschen et al. 2006; Kuether and Brake

2016). The application and results of these meth-

ods are applied to a set of impact hammer tests

conducted on the Brake-Reuß beam (Brake et al.

2014), shown in Fig. 13. The specific experiments

reported here are described in (Bonney et al. 2016).

The system is suspended by bungee cords to ap-

proximate free boundary conditions and is excited

via impact hammer and allowed to freely decay.

At the interface, the bolts are tightened to 15 Nm,

which is representative of realistic joint applica-

tions for bolts of this size. In what follows, ring

down data is used as it yields oscillatory infor-

mation at different response (or peak) amplitudes.

The mathematical relationships developed here within

assume oscillatory behavior.

72 cm

2.54 cm

12 cm30 cm

3 cm

2.54 cm0.85 cm

24 cm

Shaker A!achment Point

Accelerometer Loca"on

x

x

Fig. 13 The geometry of the Brake-Reuß beam.

A typical response for a large amplitude im-

pact is shown in Fig. 14. Due to the lap joint

located in the center of the system, the response

is dependent upon excitation amplitude. That is,

as the response amplitude decreases, the system

is expected to stiffen (increase in frequency) due

to a transition from macroslip to microslip, and

the amount of energy dissipated per oscillation is

expected to reduce (again, due to the transition

from macroslip to microslip). In these specific ex-

periments, the system is not excited to macroslip

since that would plastically damage the system.

Consequently, the shift from high amplitudes to
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low amplitudes is subtle, but still observable in

Fig. 15, which is the unfiltered spectogram of the

time history response from Fig. 14.
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Fig. 14 Representative time history for a large ampli-

tude impulse excitation.
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Fig. 15 Spectogram for the time history shown in

Fig. 14.

From the ring down data, many approaches

are available to extract the stiffness and damping

characteristics of the system, including the Hilbert

transform (Roettgen and Allen Under Review), wavelet

methods (Kerschen et al. 2006), and the short time

Fourier transform (STFT) (Kuether and Brake 2016),

which is used in the present analysis. In order to

deduce the parameters to describe the interface

with a RIPP joint, 18 different impact tests are

used in which the impact excitation is varied from

approximately 100 N to 2000 N. While 18 tests

were used, only a subset is needed to deduce a set

of parameters for a RIPP joint model; the benefit

of 18 tests is in being able to develop a statisti-

cal distribution of parameters for the RIPP joint

model that describe test-to-test variability. The

development of a statistical distribution of param-

eters if further discussed in (Bonney et al. 2016);

here, the derivation of each parameter is discussed

in detail as an example of parameter estimation

techniques for the RIPP joint model. One impor-

tant caveat is that in systems with multiple modes

in the response, such as the present system, the fol-

lowing techniques are for deriving the modal joint

properties (see, for instance, (Deaner et al. 2015;

Roettgen et al. 2014)) instead of global joint prop-

erties. To do this, the data must first be filtered

for the mode of interest.

The stiffness of the system is inferred from the

evolution of the primary natural frequency with

response amplitude (Fig. 16). For response ampli-

tudes below 4 µm, the natural frequency is con-
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stant at approximately 230 Hz. Some noise is ob-

served, though, due to the process of extracting

frequency and dissipation data from the impact

experiments. At response amplitudes above 4 µm,

a significant decrease is observed in the natural fre-

quency such that at an amplitude of 100 µm, the

natural frequency is approximately 213 Hz. This

change in frequency (△ω) is directly related to KT

as

KT = m×△ω2 ≈ 1.1× 106 N/m. (40)

In this calculation,m is the modal mass taken here

as 3.67 kg.
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Fig. 16 Frequency versus amplitude data synthesized

from 18 different impact tests.

A second quantity that can be discerned from

the stiffness plot is ϕMAX , which is later used to

deduce FS . There are two different methods for

approximating ϕMAX . From (Roettgen and Allen

Under Review), ϕMAX is approximated using data

that includes macroslip as the amplitude at which

the response frequency is the average of 0.99ω1 and

1.01ω2, where ω1 is the frequency at very low re-

sponse amplitudes and ω2 is the frequency at very

large response amplitudes. Here, as macroslip is

not observed in the data, ϕMAX is approximated

as ten times the largest response amplitude since

the system does not transition to complete macroslip.

In this case, ϕMAX = 2 mm. The consequence of

this approximation is that this parameter is valid

for the experiments reported, but ‘small’ errors are

expected to occur for larger excitation amplitudes

as no data regarding macroslip is recorded. The

term ‘small’ is used as the model is still expected

to be reasonable, but not precise in describing the

transition from microslip to macroslip. An alter-

native approach for characterizing the macroslip

properties is highlighted in (Di Maio, Schwingshackl,

and Sever 2016), in which modes that have a rel-

atively high engagement of the joint are excited

using a response amplitude control method.

One last quantity that is potentially able to

be deduced from the frequency data is the pin-

ning stiffness. However, as the system is not ex-

cited to macroslip, the pinning stiffnessKP cannot

be corroborated via experiments. Instead, as sug-

gested in Section 2.1, the pinning properties are
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deduced solely from the material and geometric

properties of the system. If the system is excited

past macroslip into the pinning regime, the fre-

quency data would exhibit a significant increase

in frequency at high response amplitudes that is

much greater than the natural frequency at low

amplitude responses.

The STFT method also calculates the damping

ratio ζ as a function of excitation amplitude. Using

the definition of the log decrement

∆ =
2πζ√
1− ζ2

= log

(
xj
xj+1

)
, (41)

with two adjacent peaks in a decaying transient

signal having amplitudes xj and xj+1, the dissipa-

tion per cycle D is calculated as the difference in

energy between the two peaks

D =
1

2
ω2mu20

((
e2πζ/

√
1−ζ2

)2
− 1

)
, (42)

where u0 is the response amplitude. From (Segal-

man 2005), D is directly related to χ by the slope

of D as a function of amplitude on a log-log plot

being 3 + χ. From the dissipation information in

Fig. 17, χ ≈ −0.76. The features of the plot near

the start of each set of data (i.e. at high amplitudes

where the dissipation curves have negative slopes)

are artifacts of the signal processing techniques.

This type of numerical artifact is also observed in

Hilbert transformation methods for deducing joint

parameters.
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Fig. 17 Calculated energy dissipation curves from 18

different impact tests.

To calculate the remaining two parameters, β

and FS a two step procedure is used. Even though

macroslip is not observed in the experiments, the

macroslip properties can be inferred from the ex-

periments at low excitation amplitudes. First, FS

is estimated from ϕMAX as

FS ≈ ϕMAXmω
2
ϕ, (43)

with frequency ωϕ at the response amplitude equal

to ϕMAX (or largest recorded amplitude when macroslip

is not observed). Second, β is calculated using this

approximation via (Segalman 2005)

β =

(
FS

ϕMAXKT
− χ+ 1

χ+ 2

)/(
1− FS

ϕMAXKT

)
.

(44)
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Lastly, FS is recalculated using this value of β and

the dissipation values (Segalman 2005)

D = 4

(
u0

ϕMAX

)χ+3(
F 2
S

KT

)

×

 (β + 1)(χ+ 1)(
β + χ+1

χ+2

)2
(χ+ 2)(χ+ 3)

 , (45)

Solving for FS yields

FS =

((
ϕMAX

u0

)χ+3 DKT

4
(
β + χ+1

χ+2

)2
(χ+ 2)(χ+ 3)

(β + 1)(χ+ 1)




1/2

. (46)

Equations 45 and 46 assume that the force across

the joint F0 over each period of oscillation is re-

lated to the peak displacement

F0

FS
≈ u0
ϕMAX

. (47)

As a result, Eq. 46 is valid only for low response

amplitudes as the constitutive behavior of the joint

at low amplitudes is dominated by the tangential

stiffness KT (whereas at higher amplitudes, soft-

ening is observed as portions of the interface be-

gin to slip, see Fig. 3), as shown in Fig. 18. Thus,

the macroslip properties are deduced from the re-

sponse in the microslip regime. Both FS and β are

iteratively calculated until the initial estimate for

FS agrees with the calculation of Eq. 46. Each of

the parameters deduced from the experiments re-

ported in (Bonney et al. 2016) are summarized in

Table 2.
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Fig. 18 Calculated macroslip force value from low am-

plitude impact tests.

Property Value

Tangential Stiffness, KT 1.1×106 N/m

Macroslip Displacement, ϕMAX 2 mm

Macroslip Force, FS 400 N

Dissipation Exponent, χ -0.76

Stiffness Ratio, β 0.16

Pinning Stiffness, KP 107 N/m

Pinning Clearance, δP 2 mm

Table 2 Joint parameters deduced from the experi-

ments of (Bonney et al. 2016).

5 Summary

The analytical representation of the discretized Iwan

model is formulated in this research for several

different friction models: the four-parameter dis-

tribution of Segalman, the five-parameter exten-

sion of Segalman’s model by Mignolet, and the

uniform distribution originally used by Iwan. The

analytical model is further extended to consider an
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Iwan-Stribeck model in order to demonstrate how

to extend the model to more complicated func-

tional forms, and discussion of how to extend the

model to other distributions is also presented. The

advantage of an analytical representation of the

Iwan model is a dramatic improvement in com-

putational time compared to the discretized Iwan

model developed in (Segalman 2005). The key hy-

pothesis that enables the analytical formulation is

that on a load reversal, there is a new distribution

of sliders in sticking and slipping states that re-

sembles a scaled version of the original distribution

of sliders. Two examples are provided to highlight

features of the model: a transient response to a

sinusoidal force, and a parameter extraction from

impact data reported for the Brake-Reuß beam in

(Bonney et al. 2016).
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