67 research outputs found

    Trends in measles incidence and measles vaccination coverage in Nigeria, 2008-2018

    Get PDF
    INTRODUCTION: All WHO regions have set measles elimination objective for 2020. To address the specific needs of achieving measles elimination, Nigeria is using a strategy focusing on improving vaccination coverage with the first routine dose of (monovalent) measles (MCV1) at 9 months, providing measles vaccine through supplemental immunization activities (children 9-59 months), and intensified measles case-based surveillance system. METHODS: We reviewed measles immunization coverage from population-based surveys conducted in 2010, 2013 and 2017-18. Additionally, we analyzed measles case-based surveillance reports from 2008-2018 to determine annual, regional and age-specific incidence rates. FINDINGS: Survey results indicated low MCV1 coverage (54.0% in 2018); with lower coverage in the North (mean 45.5%). Of the 153,097 confirmed cases reported over the studied period, 85.5% (130,871) were from the North. Moreover, 70.8% (108,310) of the confirmed cases were unvaccinated. Annual measles incidence varied from a high of 320.39 per 1,000,000 population in 2013 to a low of 9.80 per 1,000,000 in 2009. The incidence rate is higher among the 9-11 months (524.0 per million) and 12-59 months (376.0 per million). Between 2008 and 2018, the incidence rate had showed geographical variation, with higher incidence in the North (70.6 per million) compare to the South (17.8 per million). CONCLUSION: The aim of this study was to provide a descriptive analysis of measles vaccine coverage and incidence in Nigeria from 2008 to 2018 to assess country progress towards measles elimination. Although the total numbers of confirmed measles cases had decreased over the time period, measles routine coverage remains sub-optimal, and the incidence rates are critically high. The high burden of measles in the North highlight the need for region-specific interventions. The measles program relies heavily on polio resources. As the polio program winds down, strong commitments will be required to achieve elimination goals

    The cost of implementing measles campaign in Nigeria:comparing the stand-alone and the integrated strategy

    Get PDF
    Background: Effective integration, one of the seven strategic priorities of the Immunization Agenda 2030, can contribute to increasing vaccination coverage and efficiency. The objective of the study is to measure and compare input costs of “non-selective” measles vaccination campaign as a stand-alone strategy and when integrated with another vaccination campaign.Methods: We conducted a cost-minimization study using a matched design and data from five states of Nigeria. We carried-out our analysis in 3 states that integrated measles vaccination with Meningitis A and the 2 states that implemented a stand-alone measles campaign. The operational costs (e.g., costs of personnel, training, supervision etc.) were extracted from the budgeted costs, the financial and technical reports. We further used the results of the coverage surveys to demonstrate that the strategies have similar health outputs.Results: The analysis of the impact on campaign budget (currency year: 2019) estimated that savings were up to 420,000 United States Dollar (USD) with the integrated strategies; Over 200 USD per 1,000 children in the target population for measles vaccination (0.2 USD per children) was saved in the studied states. The savings on the coverage survey components were accrued by lower costs in the integration of trainings, and through reduced field work and quality assurance measures costs.Conclusions: Integration translated to greater value in improving access and efficiency, as through sharing of costs, more life-saving interventions are made accessible to the communities. Important considerations for integration are resource needs, micro-planning adjustments, and health systems delivery platforms.</p

    COVID-19 as an Accelerator of the Implementation of Emergency Medical Teams Initiative in the AFRO Region

    Get PDF
    Objective: This study describes the progress that the World Health Organization (WHO) African (AFRO) region has made in establishing National Emergency Medical Teams (N-EMTs), the coordination mechanisms of the EMTs, and the regional training centers. Methods: It used a retrospective descriptive analysis of the formulation and implementation of the EMTs Initiative from an insider perspective. The analysis is based on the review of available documents such as EMTs mission reports, assessments, surveys, EMT monthly bulletins, and meeting minutes in addition to key informant interviews (n = 5) with the EMT teams’ members to validate the findings and share field experiences. Results: The emergence of coronavirus disease 2019 (COVID-19) acted as an accelerator for the implementation of the EMT initiative in the AFRO region. A total of 18 EMT deployments were carried out in 16 countries in the AFRO region through the WHO EMT-network during COVID-19, providing support to countries in managing severe and critical COVID-19 cases. Conclusions: A Regional Training Center for N-EMTs is being set up in Addis Ababa to train the N-EMTs and strengthen local capacity of health personnel in the region. Challenges include unavailability of mentors to support countries in implementing N-EMTs and the Regional Simulation Training Center, poor funding, and coordination in the rolling out of the N-EMTs

    Framing the future of the COVID-19 response operations in 2022 in the WHO African region

    Get PDF
    With the evolving epidemiological parameters of COVID-19 in Africa, the response actions and lessons learnt during the pandemic's past two years, SARS-COV 2 will certainly continue to circulate in African countries in 2022 and beyond. As countries in the African continent need to be more prepared and plan to 'live with the virus' for the upcoming two years and after and at the same time mitigate risks by protecting the future most vulnerable and those responsible for maintaining essential services, WHO AFRO is anticipating four interim scenarios of the evolution of the pandemic in 2022 and beyond in the region. In preparation for the rollout of response actions given the predicted scenarios, WHO AFRO has identified ten strategic orientations and areas of focus for supporting member states and partners in responding to the COVID-19 pandemic in Africa in 2022 and beyond. WHO analysed trends of the transmissions since the first case in the African continent and reviewed lessons learnt over the past months. Establishing a core and agile team solely dedicated to the COVID-19 response at the WHO AFRO, the emergency hubs, and WCOs will improve the effectiveness of the response and address identified challenges. The team will collaborate with the various clusters of the regional office, and other units and subunits in the WCOs supported with good epidemics intelligence. COVID-19 pandemic has afflicted global humanity at unprecedented levels. Two years later and while starting the third year of the COVID-19 response, we now need to change and adapt our strategies, tools and approaches in responding timely and effectively to the pandemic in Africa and save more lives

    Coordination and Management of COVID-19 in Africa through Health Operations and Technical Expertise Pillar: A Case Study from WHO AFRO One Year into Response

    Get PDF
    Abstract: Background: following the importation of the first Coronavirus disease 2019 (COVID-19) case into Africa on 14 February 2020 in Egypt, the World Health Organisation (WHO) regional office for Africa (AFRO) activated a three-level incident management support team (IMST), with technical pillars, to coordinate planning, implementing, supervision, and monitoring of the situation and progress of implementation as well as response to the pandemic in the region. At WHO AFRO, one of the pillars was the health operations and technical expertise (HOTE) pillar with five sub-pillars: case management, infection prevention and control, risk communication and community engagement, laboratory, and emergency medical team (EMT). This paper documents the learnings (both positive and negative for consideration of change) from the activities of the HOTE pillar and recommends future actions for improving its coordination for future emergencies, especially for multi-country outbreaks or pandemic emergency responses. Method: we conducted a document review of the HOTE pillar coordination meetings’ minutes, reports, policy and strategy documents of the activities, and outcomes and feedback on updates on the HOTE pillar given at regular intervals to the Regional IMST. In addition, key informant interviews were conducted with 14 members of the HOTE sub pillar. Key Learnings: the pandemic response revealed that shared decision making, collaborative coordination, and planning have been significant in the COVID-19 response in Africa. The HOTE pillar’s response structure contributed to attaining the IMST objectives in the African region and translated to timely support for the WHO AFRO and the member states. However, while the coordination mechanism appeared robust, some challenges included duplication of coordination efforts, communication, documentation, and information management. Recommendations: we recommend streamlining the flow of information to better understand the challenges that countries face. There is a need to define the role and responsibilities of sub-pillar team members and provide new team members with information briefs to guide them on where and how to access internal information and work under the pillar. A unified documentation system is important and could help to strengthen intra-pillar collaboration and communication. Various indicators should be developed to constantly monitor the HOTE team’s deliverables, performance and its members

    Transitioning the COVID-19 response in the WHO African region: a proposed framework for rethinking and rebuilding health systems

    Get PDF
    The onset of the pandemic revealed the health system inequities and inadequate preparedness, especially in the African continent. Over the past months, African countries have ensured optimum pandemic response. However, there is still a need to build further resilient health systems that enhance response and transition from the acute phase of the pandemic to the recovery interpandemic/preparedness phase. Guided by the lessons learnt in the response and plausible pandemic scenarios, the WHO Regional Office for Africa has envisioned a transition framework that will optimise the response and enhance preparedness for future public health emergencies. The framework encompasses maintaining and consolidating the current response capacity but with a view to learning and reshaping them by harnessing the power of science, data and digital technologies, and research innovations. In addition, the framework reorients the health system towards primary healthcare and integrates response into routine care based on best practices/health system interventions. These elements are significant in building a resilient health system capable of addressing more effectively and more effectively future public health crises, all while maintaining an optimal level of essential public health functions. The key elements of the framework are possible with countries following three principles: equity (the protection of all vulnerable populations with no one left behind), inclusiveness (full engagement, equal participation, leadership, decision-making and ownership of all stakeholders using a multisectoral and transdisciplinary, One Health approach), and coherence (to reduce the fragmentation, competition and duplication and promote logical, consistent programmes aligned with international instruments)

    Pediatric Bacterial Meningitis Surveillance in Nigeria From 2010 to 2016, Prior to and During the Phased Introduction of the 10-Valent Pneumococcal Conjugate Vaccine.

    Get PDF
    BACKGROUND: Historically, Nigeria has experienced large bacterial meningitis outbreaks with high mortality in children. Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), and Haemophilus influenzae are major causes of this invasive disease. In collaboration with the World Health Organization, we conducted longitudinal surveillance in sentinel hospitals within Nigeria to establish the burden of pediatric bacterial meningitis (PBM). METHODS: From 2010 to 2016, cerebrospinal fluid was collected from children <5 years of age, admitted to 5 sentinel hospitals in 5 Nigerian states. Microbiological and latex agglutination techniques were performed to detect the presence of pneumococcus, meningococcus, and H. influenzae. Species-specific polymerase chain reaction and serotyping/grouping were conducted to determine specific causative agents of PBM. RESULTS: A total of 5134 children with suspected meningitis were enrolled at the participating hospitals; of these 153 (2.9%) were confirmed PBM cases. The mortality rate for those infected was 15.0% (23/153). The dominant pathogen was pneumococcus (46.4%: 71/153) followed by meningococcus (34.6%: 53/153) and H. influenzae (19.0%: 29/153). Nearly half the pneumococcal meningitis cases successfully serotyped (46.4%: 13/28) were caused by serotypes that are included in the 10-valent pneumococcal conjugate vaccine. The most prevalent meningococcal and H. influenzae strains were serogroup W and serotype b, respectively. CONCLUSIONS: Vaccine-type bacterial meningitis continues to be common among children <5 years in Nigeria. Challenges with vaccine introduction and coverage may explain some of these finding. Continued surveillance is needed to determine the distribution of serotypes/groups of meningeal pathogens across Nigeria and help inform and sustain vaccination policies in the country
    • …
    corecore