81 research outputs found

    Microscopic Theory of Scattering of Weak Electromagnetic Radiation by a Dense Ensemble of Ultracold Atoms

    Full text link
    Based on the developed quantum microscopic theory, the interaction of weak electromagnetic radiation with dense ultracold atomic clouds is described in detail. The differential and total cooperative scattering cross sections are calculated for monochromatic radiation as particular examples of application of the general theory. The angular, spectral, and polarization properties of scattered light are determined. The dependence of these quantities on the sample size and concentration of atoms is studied and the influence of collective effects is analyzed

    Studying Millisecond Pulsars in X-rays

    Get PDF
    Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (0.1\sim 0.1--10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754

    Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    Full text link
    The control of one light field by another, ultimately at the single photon level, is a challenging task which has numerous interesting applications within nonlinear optics and quantum information science. Due to the extremely weak direct interactions between optical photons in vacuum, this type of control can in practice only be achieved through highly nonlinear interactions within a medium. Electromagnetic induced transparency (EIT) constitutes one such means to obtain the extremely strong nonlinear coupling needed to facilitate interactions between two faint light fields. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Unprecedented narrow cavity EIT feature widths down to a few kHz and a change from essentially full transmission to full absorption of the probe field within a window of only ~100 kHz are achieved. By applying a weak switching field, we furthermore demonstrate nearly perfect switching of the transmission of the probe field. These results represent important milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories, single-photon transistors and single-photon gates

    Symmetry of the Neutron and Proton Superfluidity Effects in Cooling Neutron Stars

    Full text link
    We investigate the combined effect of neutron and proton superfluidities on the cooling of neutron stars whose cores consist of nucleons and electrons. We consider singlet-state pairing of protons and triplet-state pairing of neutrons in the cores of neutron stars. The critical superfluid temperatures T_c are assumed to depend on the density of matter. We study two types of neutron pairing with different components of the total angular momentum of Cooper pairs along the quantization axis (|m_J| =0 or 2). Our calculations are compared with observations of thermal emission from isolated neutron stars. We show that the observations can be interpreted by using two classes of superfluidity models: (1) strong proton superfluidity with a maximum critical temperature in the stellar core T_c^{max} > 4 \times 10^9 K and weak neutron superfluidity of any type (T_c^{max} < 2 \times 10^8 K); (2) strong neutron superfluidity (pairing with |m_J|=0) and weak proton superfluidity. The two types of models reflect an approximate symmetry with respect to an interchange of the critical temperatures of neutron and proton pairing.Comment: 20 pages, 8 figure

    Atomic spectroscopy on a chip

    Get PDF
    Abstract: We demonstrate the ability to generate extremely large rubidium densities in uncoated hollow-core photonic band-gap fibers using lightinduced atomic desorption. Once the fiber is exposed to Rb vapor for 1-2 weeks, and this atomic source is removed, the fiber yields large desorbable densities for an extended period of time. We show that optical depths greater than e -1200 can be created within seconds. Our observed Rb densities are several orders of magnitude larger than any previously reported to be generated optically, and allow for the demonstration of a relatively easy-touse fiber-based vapor cell capable of producing large optical depths without the need for thermal tuning. H. Schmidt and A. Imamoğlu, &quot;Giant Kerr nonlinearities obtained by electromagnetically-induced transparency,&quot; Opt. Lett. 21, 1936Lett. 21, -1938Lett. 21, (199

    Truncation of the Accretion Disk at One-third of the Eddington Limit in the Neutron Star Low-mass X-Ray Binary Aquila X-1

    Get PDF
    We perform a reflection study on a new observation of the neutron star low-mass X-ray binary Aquila X-1 taken with NuSTAR during the August 2016 outburst and compare with the July 2014 outburst. The source was captured at 32% LEdd\sim32\%\ L_{\mathrm{Edd}}, which is over four times more luminous than the previous observation during the 2014 outburst. Both observations exhibit a broadened Fe line profile. Through reflection modeling, we determine that the inner disk is truncated Rin, 2016=111+2 RgR_{in,\ 2016}=11_{-1}^{+2}\ R_{g} (where Rg=GM/c2R_{g}=GM/c^{2}) and Rin, 2014=14±2 RgR_{in,\ 2014}=14\pm2\ R_{g} (errors quoted at the 90% confidence level). Fiducial neutron star parameters (MNS=1.4_{NS}=1.4 M_{\odot}, RNS=10R_{NS}=10 km) give a stellar radius of RNS=4.85 RgR_{NS}=4.85\ R_{g}; our measurements rule out a disk extending to that radius at more than the 6σ6\sigma level of confidence. We are able to place an upper limit on the magnetic field strength of B3.04.5×109B\leq3.0-4.5\times10^{9} G at the magnetic poles, assuming that the disk is truncated at the magnetospheric radius in each case. This is consistent with previous estimates of the magnetic field strength for Aquila X-1. However, if the magnetosphere is not responsible for truncating the disk prior to the neutron star surface, we estimate a boundary layer with a maximum extent of RBL, 201610 RgR_{BL,\ 2016}\sim10\ R_{g} and RBL, 20146 RgR_{BL,\ 2014}\sim6\ R_{g}. Additionally, we compare the magnetic field strength inferred from the Fe line profile of Aquila X-1 and other neutron star low-mass X-ray binaries to known accreting millisecond X-ray pulsars.Comment: Accepted for publication in ApJ, 7 pages, 2 Tables, 5 Figure

    Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum

    Full text link
    corecore